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MAT 203

PRACTICE PROBLEMS

. Find a vector ¥ that has magnitude 7, and points in the same direction as the vector @ = (3,4).
. Consider the two vectors @ = (2,—4) and b = (—1,2). Find two scalars « and 3 such that

ad + Bb = 0.

. Let ¢ be some scalar, and consider the two vectors @ = (2cost, —2sint,3) and 7 = (0,0, 3).

Find the magnitude of the vectors & — ¥, and the vector —24.

. Let P = (z,y,2z) be be a point in space that is an equal distance away from the point

A= (1,-1,0), and B = (—1,2,1). Show that the point P lies on the plane satisfying the

equation -2z + 3y + z = 2.

Determine the scalar o such that the vectors @ = (2,3) and b = (9, a) are orthogonal.

Find all vectors in space that are orthogonal to the vector v = (1, -1, —1).

Find a vector & of magnitude 3 such that @ x (1,0, —1) = (3,0, 3).

Find a vector of magnitude 10 that is orthogonal to the plane passing through the x-axis and

the point P = (1,2,4).

Consider the following two parametrizations of two lines 7(¢t) = (=2 + 2t, —6,2 + 6t) and

§(t) = (=1+t,1+t,t). Are the lines perpendicular to each other?

Consider the planes given by the equations —y+ 2z —2=0and z —y = 0.

(a) Show that the planes intersect in a line.

(b) Find a parametrization of the line passing through the point P = (—8,0, 2) that is parallel
to the line of intersection of the two planes.

Identify the quadratic surface bx? — 4y? 4+ 2022 = 0.

Identify the quadratic surface 2% 4+ 22 — 4y +4 = 0.

Evaluate the limit limg_,q (ef, 2t 1),

Parametrize the curve in the plane described by the equation 422 + 93% = 36.

Let @(t) = (t2, —2t,1). Compute 4 (i(t) x @(t)).

Find the arc length of the curve parametrized by 7(t) = (—t,4t,3t) for 0 < ¢t < 1.

Compute the limit lim, ,y_(0,0) % or prove that it does not exist.
2

2
2°—y“z . .
“2ya—1 Or prove that it does not exist.

Compute the limit lim, y ) (1,2,3)

Compute the limit lim, ), (0,0) or prove that it does not exist.

%y
ac4+y2
Is the function )

) _ %7 if (x,y) # (0,0)
f(z,y) {0’ if (z,y) = (0,0)

continuous at (z,y) = (0,0)?
Let f(z,y) = arctan (£). Find f,(2,—2) and f,(2, -2).

Given f(z,y,2) = e 2 sin(z%y), show that fiyy = fyuy-

Show that f(x,t) = e 'cos(Z), where ¢ is a scalar, satisfies the so-called heat equation
of _ »20%f

ot~ 7 0x?°

Find the tangent plane of the surface described by z = sinx + sin y + sin(z + y) at the point
(0,0,0).

Find the tangent plane of the surface described by z% + y* = 3zyz at the point (1,2, 3).
Prove that the function f(x,y) = ze¥ is differentiable at (z,y) = (0,0).

Find the directional derivative of f(x,y) = In(bz + 4y) at (z,y) = (3,9) in the direction of
= (6,8).

Find the unit vector along which the function f(z,y) = arctan (£) increases most rapidly at
(x7 y) = (_9’ 9)

Find and classify all critical points of the function f(x,y) =e~
Find and classify all critical points of the function f(z,y) = 2% — 2y + y? — 1.
Find the points on the surface 22 — yz = 5 that are closest to the origin.

x?—y?—2x
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Find the maximum volume of a rectangular box with three faces in the coordinate planes and
a vertex in the first octant on the plane z +y + z = 1.

Find the global maximum and minimum values of the function f(z,y) = 2% +y?> — 2y +1 in
the region R = {(x,y) | 22 +y? < 4}.

Maximize the function f(x,%y) = 2z + 3y + 5z on the sphere 22 + 32 + 22 = 19.

Find the global maximum and minimum values of the function f(z,y) = 32 — y? in the
region of the xy-plane bounded by the graphs of the functions y = 2%, and y = /z.
Compute the double integral [[, x dzdy where D is the region in the plane bounded by the
graph of f(x) = sinz, and the z-axis for 0 < x < .

Compute the double integral [ e” dedy where R is the region in the plane bounded by the
x-axis, and the two lines y = x and y = 3 — 2z.

Compute the double integral [[, xydxdy where R is the set of all points (z,y) in the plane
satisfying y < %2 and z2 + 3% < 3.

V2212
Compute the double integral [/}, 6\/% dxdy where D is the region in the third quadrant
224y

in the plane that lies between the two circles centered at the origin of radii 1 and 2.
Compute the triple integral [[[p 2z dzdydz where P is the solid pyramid in the first octant
bounded by the plane z = 10 — 2x — y.

Compute the triple integral [[/g dzdydz where S is the region in space bounded below by the
plane z = 1, and bounded above by the sphere z2 + y? + 22 = 4.

Compute the triple integral [[[5 ZCO\S};QT;T;ZQ) dxdydz, where B is the region in the first
octant bounded by the two spheres centered at the origin of radii 1 and 2.

Determine whether the vector field F (z,y, z) = (ye*, xe*, xye?) is conservative and, if so, find
a potential function.

Determine whether the vector field ﬁ(x,y) = (e® cosy, 6e” siny) is conservative and, if so,
find a potential function.

Consider the vector field F (z,y) = (z%y? xy) and evaluate the line integral [, F - d7, where
C is the curve in the plane consisting of the y-axis for 0 < y < 1, the z-axis for 0 < x < 1,
and the part of the unit circle in the first quadrant, oriented counterclockwise.

Consider the vector field F(z,y) = (2ay, ), and compute the line integral fcﬁ - dr, where
C is the ellipse 22 4+ 2z + 4y? = 0, oriented counterclockwise.

For any differentiable vector field F' in space, prove V - (V X F )=0.

For any differentiable scalar function f, prove V x (Vf) = 0.

Compute the surface integral of the vector field F (x,y,2) = (1,1, z) of the unit sphere centered
at (0,0,0).

Let ﬁ(x, y,2) = (x +y+ 2,y,2z — y) and consider the surface S consisting of the cylinder
22 4+y% =1 for 0 < z < 3, including the top and the bottom of the cylinder. We assume S is
oriented with the outwards normal. Compute the surface integral [fg F - dF.




