ALGEBRAIC CYCLES AND THE CLASSICAL GROUPS
Part I, Rea Cycles
by

H. Blaine Lawson, Jr., Paulo Lima-Filho, and Marie-Louise Michelsohn

Abstract. The groups of algebraic cycles on complex projective space P(V') are known to
have beautiful and surprising properties. Therefore, when V carries a real structure, it is
natural to ask for the properties of the groups of real algebraic cycles on P(V'). Similarly, if
V' carries a quaternionic structure, one can define quaternionic algebraic cycles and ask the
same question. In this paper and its sequel the homotopy structure of these cycle groups
is completely determined. It turns out to be quite simple and to bear a direct relationship
to characteristic classes for the classical groups.

It is shown, moreover, that certain functors in K-theory extend directly to these groups.
It is also shown that, after taking colimits over dimension and codimension, the groups of
real and quaternionic cycles carry FE..-ring structures, and that the maps extending the
K-theory functors are F..-ring maps. This gives a wide generalization of the results in
[BLLMM] on the Segal question.

The ring structure on the homotopy groups of these stabilized spaces is explicitly com-
puted. In the real case it is a simple quotient of a polynomial algebra on two generators
corresponding to the first Pontrjagin and first Stiefel-Whitney classes.

These calculations yield an interesting total characteristic class for real bundles. It is a
mixture of integral and mod 2 classes and has nice multiplicative properties. The class is
shown to be related to the Z,-equivariant Chern class on Atiyah’s K R-theory.
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§1. Introduction.

In recent years a number of results have been proved about the topological groups of
algebraic cycles on an algebraic variety X over C. It has been shown for example that
when X is projective space, these groups provide useful models for basic classifying spaces
in algebraic topology and for certain universal characteristic maps between them. They
also yield certain new infinite loop space structures on products of Eilenberg-MacLane
spaces which make the total Chern class an infinite loop map. (See [Ly] for a survey.)

Now when X has a real structure, it is natural to consider the real algebraic cycles on X.
These are simply the cycles defined over R, or equivalently, the cycles fixed by the Galois
group Gal(C/R). When X is projective space P(V') the set of real cycles of codimension-¢
forms a topological group Zg(P(V')) whose homotopy-type is independent of V' [Lam].
The first main result of this paper is the determination of the topological structure of
Zg(P(V)). We show that it canonically decomposes into a product of Eilenberg-MacLane
spaces for the groups Z and Z,. (See Theorem 3.3 below.) The resulting structure is rather
complicated when compared to the complex case.

Our first explanation for the richness of this structure comes from considering the colimit
Zg® of these groups over dimension and codimension. Here the algebraic join of cycles
induces a ring structure on the homotopy groups and we show that as a ring

(1.1) F*Zﬂ%o = Z[l‘,y]/(Qy)

where x corresponds to the generator of my Zg° = Z and y corresponds to the generator of
Flzﬁo = ZQ.

Now the Grassmannian GY(P(V')) of codimension-¢ planes in V includes naturally into
Z9(P(V)) as degree-1 cycles. Restricting to real points gives an inclusion Gg(P(V)) —
Zg(P(V)) which stabilizes to a mapping

P:BO, — Z(Poo).

This map represents an interesting total characteristic class which, via Theorem 3.3, is an
explicit combination of integral and mod 2 cohomology classes and which has the property
that for real vector bundles E and F

P(E& F) = P(E)P(F).

In §6 we show that Zg° carries the structure of an EF-ring space and thus gives rise to an
E . -ring spectrum. The additive deloopings in this spectrum are the standard deloopings of
Eilenberg-MacLane spaces. The multiplicative deloopings extend the product in the group
of multiplicative units of the theory. We show that for the multiplicative deloopings, the
limiting map

P:BO — ZF

is an infinite loop map yielding a map of spectra P : R0 — Mg from connective K-theory
to the multiplicative spectrum of the theory.
The cycle groups admit two natural homomorphisms:

ZLP(V)) «— ZEP(V)) — Z(P(V)).
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The left mapping is the obvious inclusion. The right mapping is projection to the Galois
quotient Zg(P(V)) = Zg(P(V))/Z%,(P(V)) where ZL,(P(V)) = {c+7c:c € ZLP(V))}.

The colimits of these spaces have E..-ring structures for which the limiting maps
2 — ZF — ZF

are E-ring maps. It is known that 7, Z2° = Z[s] where s corresponds to the generator of
T 28 = 7 and 7w, Zg° = Z5]y] where y corresponds to the generator of m Zg° 2 Z,. Under
the isomorphism (1.1) we show that the maps above induce ring homomorphisms

L[s] «— Z[z,y]/(2y) — Zaly]

given by z +— s% and y — y.
Composing with the mapping P gives two new mappings

Z& =[]0 K(Z,2k)
/!

P
BO — — Z
N\
2& 2 [io K(Zo. k).

The top composition classifies the total Chern class of the complexification, and the bottom
classifes the total Stiefel-Whitney class. Thus the characteristic class P carries all this
information. Furthermore, the maps above all extend to infinite loop maps.

Surprisingly other natural functors in K-theory, such as the forgetful functor, extend
from Grassmannians to the spaces of all cycles yielding new proofs of relations between
characteristic classes. (See §5.) In §6 these maps are also shown to be infinite loop maps.

There is a unifying perspective on the results discussed above. For this we revisit the
map

(1.2) c:BU — Z&

and recall that it is a Zy-map with respect to complex conjugation. Thus we plunge into
the world of Zs-spaces, Z;-maps, and Zs-equivariant homotopy theory. Note that a Zs-
space is just a Real space in the sense of Atiyah [A]. Furthermore, BU is the classifying
space for Atiyah’s K R-theory. We prove in §6 that Z2° has the structure of a Z,E-ring
space and that ¢ is a Zs-equivariant infinite loop map into the multiplicative structure.

In his thesis, Pedro dos Santos has proved that there is a canonical Z;-equivariant
homotopy equivalence

(1.3) zg = [[ K@ rm)
k>0
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where K(Z,R™"™) denotes the equivariant Eilenberg-MacLane space classifying Z,-equivariant
cohomology indexed at the representation R™"™ = C" (with action given by complex con-
jugation) and with coefficients in the constant Mackey functor Z. He furthermore shows
that with respect to (1.3) the algebraic join pairing classifies the equivariant cup prod-
uct and the mapping (1.2) classifies the equivariant total Chern class in K R-theory. Our
characteristic mapping P represents the restriction of this equivariant Chern class to the
fixed-point sets. (See §6 for details.)

Analogous results for the quaternionic case are proved in Part II of this paper.

The authors would like thank Pedro Santos and Daniel Dugger for several very useful
remarks and conversations relating to this work. They would also like to mention that
in his thesis, Jacob Mostovoy computed some of the homotopy groups that appear in
this paper. His results were announced in [Mo;] and subsequently appeared in [Mos].
The authors are indebted to the referee for several valuable contributions including an
improvement in Proposition 8.2 from “homotopy equivalence” to “homeomorphism” and
a proof of Proposition 5.3. The second author would like to thank the hospitality of
Osnabruck Universitat, the University at Stony Brook and Stanford University during the
elaboration of portions of this work.

§2. Spaces of complex cycles. For expository purposes we quickly review some known
results for groups of algebraic cycles over C. The reader is referred to [Ls] for an enlarged
exposition. Let V be a finite-dimensional complex vector space. For integers d,q > 0, let
CI(P(V)) denote the Chow variety of effective algebraic cycles of codimension ¢ and degree
d in the projective space P(V'). The disjoint union C4(P(V)) = [[,CHP(V)) is an abelian
topological monoid whose naive group completion is denoted by Z¢(P(V)).

As usual let K(G,n) denote the Eilenberg-MacLane space with 7, K(G,n) =2 G and
Tl (G,n) =2 0 for m # n, and for a graded abelian group G, = @j>0 G, let K(G,)
denote the weak product K(G,) = H]‘>0 K(Gj,j).

Theorem 2.1. ([L;]) For ¢ < dim P(V') there is a canonical homotopy equivalence
(2.1) ZYP(V)) =2 K(Z,0)x K(Z,2) x K(Z,4) x --- x K(Z,2q)

The canonical aspect of this splitting is discussed in Appendix A.

Theorem 2.2. ([LM]) The algebraic join determines a continuous biadditive pairing
(2.2) #:ZIPV))AZCPV)) — 2PV eV

which, with respect to the splitting (2.1), represents the cup product.

Theorem 2.3. ([FM]) Under the join pairing (2.2) the homotopy groups of the limiting
space Z*° form a graded ring isomorphic to a polynomial ring in one variable

(2.3) T2 = 7[s]

where s € w9 Z> is the generator.



If one considers Z[s] as a graded ring with one generator in degree two, then the
quotient Z[s]/(s?t!) has a natural structure of graded abelian group. Using the terminol-
ogy established above, Theorems 2.1 and 2.3 can be reformulated by saying that one has
canonical homotopy equivalences Z4(P(V)) = K ( Z[s]/(s?™!) ) and 2 = K (Z[s]).
Furthermore, the latter equivalence induces, under the join pairing, a ring isomorphism
T2 =2 Z[s].

Let GY(P(V)) = C{(P(V)) denote the Grassmannian of codimension-¢ planes in P(V),
and let Z9(P(V))(1) denote the connected component of Z¢(P(V')) consisting of all (not
necessarily effective) algebraic cycles of degree 1.

Theorem 2.4. ([LM]) Under the splitting (2.1) the inclusion
(2.4) GHP(V)) = 24(P(V))(1)

represents the total Chern class of the tautological g-plane bundle £ over G1(P(V)).
Passing to a limit as dim(V') — oo gives a mapping

q
BU, — ZP>)(1)=1 x [[&(Z.2)
=1
which classifies the total Chern class of the universal ¢-plane bundle £ over BU,. Taking
the limit as ¢ — oo gives a mapping

(2.5) BU — 2¥(1)21 x [[K(Z.2i) = K(Z,2%)

=1
which classifies the total Chern class map from K-theory to even cohomology.

This natural presentation of the total Chern class map comes equipped with the following
remarkable property.

Theorem 2.5. ([BLLMM]) The join pairing on K(Z,2+) enhances to an infinite loop
space structure so that with respect to Bott’s infinite loop structure on BU the map (2.5)
is an infinite loop map.

63. Spaces of real cycles. A Real structure on a complex vector space V is a C-
antilinear map p : V — V such that p? = 1. A Real vector space is a pair (V, p) consisting
of a complex vector space V and a Real structure p. Any such space is equivalent to (C", pg)
where pg 1s complex conjugation.

A Real structure p on V induces an anti-holomorphic Z3-action on the complex projective
space P(V) which in turn induces an anti-holomorphic Zy-action on the Chow varieties
CH(P(V)). This produces an automorphism

(3.1) p: ZYP(V)) — ZYP(V)).
of the topological group of all codimension-¢ cycles on P(V).
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Definition 3.1. By the Real algebraic cycles of codimension ¢ on P(V') we mean the
subgroup Zg(P(V)) of cycles fixed by the involution p. The closed subgroup of Galois
sums

ZIPV)" ={c+pc|ce 29P(V))}

is called the group of averaged cycles, and the quotient
Zg(P(V)) = Zg(P(V)/ 2(P(V))"™
is called the group of reduced Real algebraic cycles.

We have adopted the standard definition of real algebraic cycles as those which are fixed
by the Galois group Gal(C/R). Note that the group of reduced cycles is the topological
vector space over Z, freely generated by the irreducible Real subvarieties of P(V').

Fix a Real vector space (V,p) and let g = [0:---: 0:1] € P(V & C). Given an
irreducible algebraic subvariety Z C P(V) we define its algebraic suspension £Z =
ro#Z C P(V & C) to be the union of all projective lines joining Z to xo. Algebraic
suspension extends linearly to a Z5 equivariant continuous homomorphism

(3.2) L:ZYP(V)) — ZYP(V ¢ C)).

The Algebraic Suspension Theorem [L;] states that (3.2) is a homotopy equivalence.
When V is a Real vector space, T. K. Lam showed that (3.2) is an equivariant homotopy
equivalence. (See [LLM;] for considerable generalizations.) In particular we have the
following.

Theorem 3.2. ([Lam]) Algebraic suspension induces homotopy equivalences:

L: ZRP(V) S ZHP(VeC), L Z(PIV)T S ZUP(V eC)”,
and ¥ ZLP(V)) S ZLP(V & C)).
for all ¢ < dim(V).

This result shows that the homotopy types of the topological groups Z&(P(V)), Z4(P(V))*"

and g(P(V)) depend only on ¢, and so we can drop the reference to V. Our first theorems
compute these homotopy types.

Theorem 3.3. There is a canonical homotopy equivalence

Zi = f[ ﬁ K(Lugn+k)
n=0 k=0

where

0 ,ifkisoddork >n;
I,.=< Z ,ifk=nandkiseven;

Zy , ifk<n andk is even.



Theorem 3.4. There is a canonical homotopy equivalence

7

ze, = T I K (125, n+k)

n=0 k=0
where Iy = 2Z and forn +k >0
0 , ifkisoddork>n;
nk = I;Tk_l(ll:""’é_l; Z) = Z | ifk=nandk>2iseven;
Zy , ifk<nandk>2iseven.

The homomorphism on homotopy groups induced by the inclusion 2%, C Zj is injective,
and with respect to the splittings above, it maps I to I, in the obvious way. (This
explains the 27 in Iy .)

Theorem 3.5. ( [Lam]) There is a canonical homotopy equivalence
(3.1) ZL > K(7,,0) x K(Zy,1) x K(Z5,2) x --- x K(Zy,q).

The proofs of these results are given in §8. Useful diagrams of the graded groups 7%, and
7, x are given in §9.

§4. The ring structure. The homotopy groups
(4.1) wZh = P Lk
0<k<n<g
are vastly simplified conceptually if one takes into account their multiplicative struc-
ture. The algebraic join pairing (2.2) restricts to a pairing
#iZEAZE — 2L

which gives 7, Zg° the structure of a commutative ring. Since the join of an averaged cycle
with a fixed cycle is again an averaged cycle, the subgroup 7,275 is an ideal in this ring.
In §9 we will prove the following result.

Theorem 4.1. There is a ring isomorphism
(4.2) mZg = 2z,y]/(2y)

where x corresponds to the generator of m4 Zg° = Z and y corresponds to the generator of
m 2" = I,, and where (2y) denotes the principal ideal generated by 2y in the polynomial
ring Z[x,y|. Under this isomorphism the ideal 1,22 C n.Zg° corresponds to the ideal

T 200 =2 (2,x)

generated by 2 and x. Furthermore, with respect to the isomorphisms (4.1) and (4.2), we
have
Iyyte2m 1s the cyclic subgroup generated by :L'myf.



Corollary 4.2. The algebraic join induces a ring structure on ﬂ*gﬁo. There is a canonical
ring isomorphism N

T Zg = Ly
where y in the generator of 7r1§ =17,.
Remark 4.3. Consider the polynomial ring Z[z,y] on the variables @ and y, of degrees
4 and 1, respectively. Given a non-negative integer ¢, define the ideal

Jo=(2y, {a™y’ : 2m+j=q+1}) CZ[z,vyl,

and denote Jo, = (2y). Each quotient ring R{ = Z[z,y]/J,, ¢ = 0,... , 00, has the natural
structure of a graded abelian group.

Using this notation, Theorem 3.3 can be rephrased by saying that there is a canonical
equivalence

28 =~ K(RY).

Under this equivalence the direct summand Iy 42, of the (4¢ + j)-th homotopy group of
Zg is precisely the subgroup of R{ generated by z¢y’/. One can rephrase Theorem 3.4 and
Corollary 3.5 in a similar fashion.

We also prove that there are canonical equivalences

ZE 2 K(R®), 282 = K(Lfy]) and Z2=K(I")

Here I*? is the ideal 1" = (2,2) C R°. Furthermore, these homotopy equivalences induce
the ring isomorphisms presented in Theorems 4.1 and Corollary 4.2.

65. Extending functors from K-theory. We shall now show that certain basic functors
in classical representation theory carry over to algebraic cycles. This remarkable fact
together with [LM] and the results of §3 leads to a new proof of the basic relationships
among characteristic classes.

Before beginning we set some notation. For all £ > 0 let

or € H*M(K(Z2,2k);2) =227  and 7 € HY(K(Zy, k); o) = Z,
denote the fundamental classes (i.e., the canonical generators). Let ¢, wy, and p; denote
respectively the k'™ Chern, Stiefel-Whitney, and Pontrjagin classes.

Complexification. Consider a Real vector space (V, p) and the map (V,p) — V which
forgets the Real structure. Associated to this is the homomorphism Zg(P(V)) — Z{(P(V))
which simply includes the subgroup fixed by p into the group of all cycles. Restricting to
linear cycles gives a commutative diagram

Gr(P(V)) —— Ge(P(V))

(5.1) Pl l



where

Gr(P(V)) = {e Ge(P(V)) : p(0) =0}

is the Grassmannian of real subspaces of codimension-¢ in Vg = {v € V' : p(v) = v}.

Recall from 2.4 that under the canonical identification ZZ(P(V)) = [[i_, K(Z, 2k)
the map ¢ in (5.1) classifies the total Chern class of the tautological ¢-plane bundle
& — GLP(V)), ic.,

(ar) = cr(EL) for k=0,...,q.
Consider the composition
(5.2) w=mo0P:GhP(V)) — ZEP(V))

where 7 : ZZ(P(V)) — g(P(V)) = ZF(P(V))/Z9P(V))* is the projection. It is a
result of Lam [Lam] that under the canonical identification Zg(P(V)) = [[i_, K(Z, k),

the map w classifies the total Stiefel-Whitney class of the tautological real ¢-plane bundle
e — Gr(P(V)), ie,

w*(1x) = wi(&R) for k=0,...,q.

We now set V = C" and take the colimit of the spaces in (5.1) and (5.2) as n — oc.
This gives a diagram

BO, —— BU,

r| |-

zZg —— Z{

|

(5.3)

Z4
where Z{ = lim ZZ(P(C")), etc.. By using (3.3), this can be canonically rewritten as
2l
BO, EE— BU,
Pl lc
[4/2] g—2n [¢/2] . .
(5.4) HO H K(Z2,4n +1) X kHK(ZAk) — k K(Z,2k)
n— =1 =0 —0



The map v on classifying spaces is the one induced by the inclusion O, C U, associated
to the complexification of vector spaces Vg — Vg @ C.
Consider the classes

J2k def M € sz(Z; Z) and ;k f T € Hk(Z3 Z).

From these theorems and the commutativity of the diagrams above we see that
(5.5) (—D)FP*jy = pe(&)  and  P*jp = wi(éh).
In particular, jy; 1s not divisible and not torsion, whereas jyr4+2 has order 2. From the

factoring (5.10), (5.11) below we see that jup = ¢4 + 7 where 27 = 0.

The forgetful functor. For a complex vector space V one constructs the conjugate space
V by taking the same additive group and defining a new scalar multiplication e by tev = tv.
With this we can associate to V' a Real space ([V]g, p) where

Vg = VaVv and p(v,w) = (w,v).
For any ¢ < dim(V') we have a map
3 ZLP(V)) — ZZ(P(VaV))

defined by
D(c) = cffc

where # is the complex join. This construction gives commutative diagrams

GLIP(V)) —— GU(P(V]R))

ZLP(V)) —— Z2(P([V]R))

which stabilize as above to commutative diagrams

¢
BUq — BOQq

| [r
o]
Zg: s Zq.

Note that ¢ is the map induced by the standard inclusion U, C Oa,.
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Relations. Consider the diagram
BUq E— BOZq 4 BUQq
(5.6) ‘| r| |-
¢ - - ¢ 2q T 2¢ - -
szo K(Z,2)) —— Zg! —— szo K(Z,2y)

Note that if V' has a real structure p, then under the isomorphism I'&p: V eV — Ve V,
the map ®: Z{ — Z[éq becomes ®(¢) = c#pi(c). It follows that

Fod(c) = cfpa(c)
for ¢ € ZL. We conclude the following.

Proposition 5.1. The composition I" o ® satisfies

(Co®) e = Y (=112 Uy

(5.7) o

‘ _ { 25 (=1 105 U taameyy + (= 1)™id,,  if b =2m

0 it k=2m+1
for all k.
Proof. By Theorem 2.2 the join mapping # : Z2¢ x Z2{ — Zqz:q has the characterizing
property that #% = Ei—i—j:k ta; @ taj. It is straightforward to verify that the map
p: Z¢ — Z& induced by the real structure p, has the characterizing property that
A 1x #

p*iar = (—1)Fig5. Taking the composition zL — Zl x z{ N ZEx 2L — ZL and
pulling back ¢9; gives the result. Il

Similarly we have the diagram

¢
BO, —— B, " BO,,

(5.8) l l l
z4 L 10, K(Z,2)) ., Z

and the relation
D oI'(¢c) = c#pwc = cHe,

ie., ® ol is just the squaring map. Thus ® o I' induces a map
$oT: 3L, 3
which is also the squaring map.
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Proposition 5.2. Under the canonical equivalence 3.5, the composition ® o I' satisfies

2 if k=2m

— 1
5.9 OoT)T, — LUT = 4 m
(59) (®oT)"k g;kf ‘i {0 i ok=2m 41

for all k.

Proof. Using the fact that the join # : 2 X 2 — qu classifies the cup product [Lam],
one proceeds as in the proof of 5.1. U

Note that the composition BO, — ZVD% — gﬂiq classifies the square of the total Stiefel-
Whitney class w(£g)? = 35— we(ég)*

Notice that as ¢ increases the diagrams (5.8) are included in one another. From [L;] and
[Lam] we know that if we define Z&™' € Z& via the inclusion V x {0} C V @& C, then

ZL/ZE > K(Z,2¢) and  ZL/ZLT' = K(Z,,q).
From this we obtain a diagram

BO,/BO,_, —— BU,/BU,_,

To
(5.10) Zi/zit 1 K(Z,2q)
I((Z% Q)
and from Theorem 3.3 we know that
go—1

Zl 2T = K(Z,4q0) x ] K(Z2,200 +2i)  and
(5.11) " =0

Zplotzgt = [ K220 20 + 20 4+ 1).

=0

By Theorem 3.4 the map my kills all factors with ¢ > 0. However, I'y could represent
non-trivial cohomology operations on K (Zy, 2%).

At this point one might naturally ask: What is the cohomology class I'j(t24)? The
following answer, which was provided by the referee, will be proved at the end of §8.
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Proposition 5.3. The class I'{(i24) Is is given by

log®@1®@1---@1 when ¢ is even

T3(12,) =
o(t2q) { 1@ ®1®B(lag—1) when ¢ is odd

where (3 is the Boskstein operator.

Consider now the composition P given by

BO, % BO,/BO,_; 2% z&/zi

where @) is the quotient and Py comes from (5.10). The image of @* in H*(BO,; Z3) =
Zs[wy,...,w,] is the ideal (w,) generated by the ¢ Stiefel-Whitney class w,. Con-
sider the canonical product structure (5.11) and let K (Z,;x'y?~2") denote the Eilenberg-
MacLane space K(Zy;q + 2i) corresponding to the monomial x'y?~%* under the identifi-
cation Zgr = K (Z[z,y]/(2y)). With this notation, let 7, 2; denote the fundamental class
in HI2(K(Zy,2'y?1™%"); Z5) pulled back to the product. Note that 7, ; is the Kronecker
dual to the class 6, 9; introduced in (9.11). Then we see that

(512) P*Tq’zi = F, ’Qi(wl, Ce ,wq_l) * Wy

where Fy 2;(&,...,64—1) € Z3[&1,...,€,—1] is a homogeneous polynomial of weighted de-
gree 21, i.e., Fy o,(t&1,t%¢, ..., 117 1) = 7 F, 2,(£). These polynomials determine P up
to homotopy.

§6. Equivariant infinite loop space structures and K R-theory. In this section we
shall show that our spaces of complex algebraic cycles have the structure of an equivariant
E-ring spaces (cf. [LMS]), under the Z, action induced by complex conjugation. The
principle is the same as in [LLM;], where the ruled join of cycles induces the infinite loop
structure. However, here we obtain RO(Z3)-graded cohomology theories, as opposed to
R(Z5)-graded ones.

Furthermore, we show that one obtains two canonical equivariant infinite loop spaces
from these constructions. The first one comes from delooping the additive structure,
which yields an equivariant ring spectrum. The second one come from delooping the
multiplicative units of the original ring space. This yields an equivariant spectrum which
is directly related to characteristic classes in Atiyah’s K R-theory.

It follows from these constructions that the space of real cycles Zg° is also an E-ring
space and that most of the maps introduced in previous sections are maps of E..-ring
spaces. Our arguments involve P. May’s use of equivariant Z,-functors and make extensive
use of the constructions in [LLM;]. We shall briefly introduce the concepts but refer the
reader to [LLM;j] for many details.

Consider C* as a direct sum R>@ (R with its standard orthogonal inner product, and
where 7, acts by complex conjugation. Then C*° contains infinitely many copies of each
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irreducible real representation of Zs, in other words, in the terminology of [LMS] it is a
complete £o-universe. It will be fixed throughout this discussion.

In general, suppose G is a finite group and let I/ be a fixed G-universe. Recall that an
equivariant infinite loop space X, indexed on U, is a based G-space for which there is col-
lection of G-spaces {X (V)| V CU is a G-submodule} together with G-equivariant home-
omorphisms X = QV X(V). Here QY X(V) denotes the space of based maps F(SY, X(V))
from the one-point compactification SY of V to X(V), and Q¥ X (V) is equipped with its
natural structure of G-space. The structural homeomorphisms are coherent in the sense
that, if for a given submodule W C V one denotes by V' — W the orthogonal comple-
ment of W in V, then there are compatible G-homeomorphisms X (W) = QV-W X (V). In
general, to give a G-space X' an equivariant infinite loop space structure is to provide a
G-homotopy equivalence between X' and an equivariant infinite loop space X.

Remark 6.1. If {X(V) | V C U} is the collection of equivariant “deloopings” of the
equivariant infinite loop space X, let X (n) denote X (R") for the trivial G-module R™. Then
for any subgroup H < G, the fixed point set X has the structure of a (non-equivariant)
infinite loop space, since the G-homeomorphism X = Q"X (n) gives a homeomorphism
of fixed point sets X = (Q"X(n))H = Q" (X(n)H> Furthermore, if H < K < G are
subgroups then, under the structure defined above, the inclusion X* c X is obviously
a map of (non-equivariant) infinite loop spaces.

In order to show that a G-space X has the structure of an equivariant infinite loop
space, we use the machinery developed in [CW]. In this formulation, one considers the
category of GL(U)-spaces, whose objects are G-spaces on which there is an action of the
equivariant linear isometries operad GL(U) (cf. [Ms, pp 10 fI], [CW]), and where a map
of GL(U)-spaces is a G-map which commutes with the action of GL(U). The next result
is a formulation of the main results from [CW], suitable for our purposes.

Theorem 6.2. ([CW]) Let U be a complete G-universe and let X be a GL(U)-space
which is G-group-complete. In other words, for each subgroup K < G the induced H-space
structure makes mo(X ™) a group. Then X has an equivariant infinite loop space structure.
This structure is natural in the sense that any map of G-group-complete GL(U)-spaces
induces an equivariant infinite loop map.

From now on, we restrict ourselves to the case where G = Z5 and fix the 7, universe
U = C> described above. For simplicity we shatll write £ instead of Z;L(U), and we shall
avold mentioning the universe in most instances.

Following Atiyah’s terminology [A], define a Real topological space to be a pair
(X,p) where X is a space and p : X — X is an involution. In other words, X is a Zs-
space. A Real mapping f : X — Y between Real spaces is one which commutes with
the involutions (a Z-equivariant map). We denote by Z,7 the category of compactly
generated, based Hausdorff Real topological spaces, with base-point fixed by the action.
The morphism spaces in Zy7 are given the usual topology in the compactly generated
category, and have the natural Z,-action on them.

A natural way of constructing actions of the equivariant linear isometries operad £ uses
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the following notions. Let Z;7, the subcategory of the category of finite dimensional her-
mitian Zs-modules and Z;-module morphisms, whose morphisms are also linear isometries.

Definition 6.3. A 7Z,;7,.-space (or Z;Z,.-functor) (T,w) is a continuous covariant functor
T : 27237, — Z;T together with a (coherently) commutative, associative and continuous
natural transformation w : T'x T — T o @& such that

(1) If » € TV and if 1 € T{0} is the basepoint, then
we,l)=zeT(Va{oh)=TV,

(2) 'V =V' g V" then the map TV' — TV given by = — w(a,1) is a homeomor-
phism onto a closed subset;

(3) Each sum map w : T(V) x T(W) — T(V & W) is a G-map;

(4) Each evaluation map e : Z;Z,(V, W) x T(V) — T(W) is a G-map.

The following result is a direct consequence of the techniques in [M3]. See the discussion

in [LLM,, §2].
Theorem 6.4. If (T,w) is an Z,7,-space, then

T(C®) = lim T(V),

where the limit is taken over finite-dimensional Z5-submodules of C*°, is an L-space. Any
map ® : (T,w) — (T',0") of T,-spaces, induces a mapping ® : T(C>®) — T'(C*) of
L-spaces.

A given V € Z37, can be written as V = R" & 0 @ R™, where R* denotes a trivial
representation of rank k and o is the sign representation of Z,. In particular, if one
denotes by Vg the underlying real vector space of V, then the sum V o @V is canonically

isomorphic to V¢ o Ve @ C as a Zy-module, where the action on the latter is given by
complex conjugation. Given such V, we denote its real dimension by v = n + m, and for
any map f : V — W we denote by f¢ its natural extension to the complexified vector
spaces.

Example 6.5. (The Grassmann functor) Given V € 7,7, of dimension v, let
Ta(V)=G"(Ve dVe) = G (P(Ve & Ve )) be the Grassmannian of codimension-v complex
planes in Ve &Ve, with distinguished point 1 = Ve @{0}. To a linear isometric embedding
f:V — W we define T f : TV — TgW on a plane P C Ve & Vg by Taf(P) =
(feVe)t @ {0}) @ (fe ® fe)(P). The natural transformation wg : Tg X Tg — Tg o @ is
given by the direct sum, i.e., for P € TgV and P' € TgV', we define wg(P, P') = 7.(P®P')
where 7: VaVaV ¢V — Ve V' @V @V’ is the isometry interchanging the middle

factors. This is an Z,7,-functor, and
Ta(C>*) = BU

is then a Z5-equivariant L-space, and hence it is an equivariant infinite loop space; cf.
Theorem 6.2. According to Remark 6.1, if {0} denotes the trivial subgroup of Zs, then
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both fixed point sets BU = BU%} and B0 = BUZ2 inherit infinite loop space structures
which makes the canonical “complexification” inclusion BO <— BU a map of infinite loop
spaces. These are the standard Bott infinite loop space structures. (See [M3, pg.16].)

This equivariant structure on BU classifies an RO(Z;)-graded equivariant cohomology
theory which we now recall.

Definition 6.6. Let (X, p) be a Real space. A Real vector bundle over (X, p)is a Real
space (E, pg) where 7 : E — X is a complex vector bundle, pg is a complex anti-linear
bundle map, and 7 is a Real map, 1.e., mpp = pr.

A Real projective variety with its complex conjugation involution gives a Real space.
Important examples are the Grassmannians G4(C") and the Chow varieties. The universal

g-plane bundle 7 over G4(C") is a Real bundle.

Proposition 6.7. Let (X, p) be a Real space which is compact and Hausdorff. Then the
association f +— f*£? gives an equivalence of functors:

[X,GY(C¥)g — Vecth(X),

from homotopy classes of Real mappings X — G1(C®) to the set Vect(X) of equivalence
classes of Real q-dimensional vector bundles over X.

Proof. One can carry through the standard proof (cf. [MS]). The only point to establish
is that a Real bundle is locally trivial in the category of Real bundles. This is shown for
example in [A]. O

It follows that the limiting Real space G = G>®(C> ¢ C>*) = BU classifies Atiyah’s
K R-theory ([A]), and hence this equivariant infinite loop space structure on BU gives
an equivariant spectrum AR whose associated RO(Z5)-graded cohomology theory is an
enhancement of K R-theory.

In what follows, we show how to construct another Z,7,-functor using constructions
with algebraic cycles. The resulting equivariant infinite loop space will then be used to
provide characteristic classes for the RO(Z3)-graded K R-theory.

Example 6.8. (The algebraic cycle functor) Consider the functor defined by setting
Tz(V) = Z'(P(Vg & Vg)), the topological group of codimension-v cycles in P(Ve & V),
with 17 = 1. To a morphism f : V — W we associate

Ty (f)e = P(fec(Ve)™ & {0}) #(fc & fe)«(c),

and we define wy by
wz(c,c') = mu(c#c).

Using the same arguments as in [LLM;], it can be shown that (T7,wz) is a Z2Z,- functor
with the Z;-action given by conjugation, and hence

Tz(C™) = Z¢
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i1s an equivariant L-space. In fact it is an equivariant F..-ring space which is additively
Z,-group complete and therefore it is equivalent to the O™ space of an equivariant E..-ring
spectrum, which we denote by 3¢.

The join operation wy has various properties which yield important results:

(1) The join is multiplicative with respect to degree of cycles, in other words
degwy(c, ') = dege - degc';

(2) If ¢ is an averaged cycle then, for any fixed cycle ¢/, the join wz(c, ') is also an
averaged cycle. In other words, the averaged cycles form an “ideal” within the fixed
cycles.

Now, let Z2°(1) C Z& be the subspace consisting of the cycles of degree one. Since the
join operation wy is equivariant and multiplicative on degrees, one concludes that:

a. Zg&(1) is also an equivariant Z-group-complete L-space, since it is connected and
its fixed point set is connected. It then follows that ZZ°(1) carries a structure of an
equivariant infinite loop space of its own, and hence it is equivalent to the 0" space of
another equivariant spectrum, which we denote by Mg to emphasize the fact that we are
equivariant delooping the multiplicative units of ZZ.

b. Given V € Z57,, the “forgetful map”

Dy ZLP(Ve @ Vo)) — Zg'(P(Ve d Ve & Ve @ Ve)),

which sends ¢ to wz(edc), is not a group homomorphism. Nevertheless, the preservation of
degrees by the join implies that the maps @y define a map of (non-equivariant ) Z,-functors
between Z¢ and Zg, which preserves cycles of degree 1. In particular, they induce a map
of L-spaces & : Z2°(1) — Z°(1).

All of this discussion, in fact all the discussion in sections 4, 5, and 6 of [BLLMM] and
section 3 of [LLM); ], which include material on Chow monoid functors, carries over directly
to our spaces of algebraic cycles.

Theorem 6.9.

(1) The limiting topological group Z&° is an equivariant E.-ring space which forms
the 0-level space of an equivariant E. -ring spectrum 3¢. The fixed point set Zg°
is a (non-equivariant) E.-ring space which forms the 0-level space of an Eo.-ring
spectrum 3g. The inclusion I': Zg° — Z& extends to a map of (non-equivariant)
ring spectra I' : 3g — Ac.

(2) The quotient group Z~ def ZZ/(Z&)* is also an E-ring space, and the quotient
map p: Zg~ — Z~ is a map of E -ring spaces. Hence, Z~ is the 0" space of
an F.,-ring spectrum 3, and there is a natural map of spectra p : g — 3
Similarly, Z~(1) is an infinite loop space under the operation induced by the join,
which makes it into the 0™ space of an spectrum Mg.

(3) Z&(1) carries an infinite loop space structure which enhances the algebraic join,
and makes it into the 0-level space of an equivariant spectrum 3¢. The fixed point
set Zg° is a (non-equivariant) Eo-ring space which forms the 0-level space of a
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spectrum Mg. The inclusion T' @ ZR°(1) — Z(1) extends to a map of (non-
equivariant ) spectra Mg — M.

(4) The canonical “forgetful map” ® : Z(1) — Zg°(1) induces a map of (non-
equivariant ) spectra ® : Me — M.

An important feature of Z2°(1) comes from the fact that the inclusion
G'(P(Ve @ Ve)) € 2"(P(Ve @ Ve))(1),

as effective cycles of degree 1, is a natural transformation of Z,7,-functors, and the resulting
map

BU — Zgo(l)

i1s an equivariant infinite loop space map. This fact, together with the discussion above

and [BLLMM], gives the following result.
Theorem 6.10.

(1) The canonical equivariant inclusion BU — Z2°(1) extends to a morphism
¢: AR — Me
of Zy-equivariant spectra. Passing to fixed point sets gives maps of (non-equivariant)

spectra P : Ro — Mg from connective K O-theory to Mg, and ¢ : Ku — M from
connective K-theory to M. These maps fit into a commutative diagram of spectra

ﬁoLﬁu

gl L

m _— mc
r
which extends the commutative diagram

BO . BU

r| |-

>0 >0
ZR —>F Z&,

where the map ¢ : BU — Zg classifies the total Chern class. The composition

Ro — Mg — Mg is an extension to spectra level of the classifying map BO —
Z(1) — Zg°(1) for the total Stiefel-Whitney class.

Analogous results for the groups of quaternionic cycles will be established in the com-
panion paper [LLM;3].
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A natural question now arises: What is the equivariant cohomology theory classified by
the Zy-spectrum 3¢? In his thesis Pedro dos Santos has established the following beautiful
results. To state them we briefly recall some concepts from equivariant homotopy theory
(cf. [My].)

Let G be a finite group and M a Mackey functor for G. To each real representation V' of
G there is an Eilenberg-MacLane space (M, V') which classifies the ordinary equivariant
cohomology group H/,(e; M) in dimension V with coefficients in the Mackey functor M.
These fit together to give an equivariant spectrum K(A4,0) which classifies the full RO¢-
graded equivariant cohomology with coefficients in M.

We now specialize to the group G = Z; and M = Z, the Mackey functor constant at Z.
For each n we consider the fundamental respresentation R™" = C" of Z, given by complex
conjugation.

Theorem 6.11. ( dos Santos [dS]) There is a canonical Z,-equivariant homotopy equiv-
alence

(6.1) zg = [ x@Z.Rr™).
n=0

This extends to an equivalence of Z,-equivariant ring spectra
3c = K(Z,0) xK(Z,R") x K(Z,R*?) x ...

where K(Z,0) is the equivariant Eilenberg- MacLane spectrum and K(Z,R™"™) is the con-
nective equivariant spectrum with QRH’RK(Z, R™™) =2 K(Z,0), and where the ring structure
is given by the equivariant cup product pairing.

For a Z;-space X we denote by Hz (X;Z) the full ROz,-graded equivariant cohomol-
ogy ring of X with coefficients in the Mackey functor Z. We abbreviate H%;’H(X;Z) =
Hy,"(X;Z)

Theorem 6.12. (Dugger and dos Santos ) There is a canonical ring homomorphism
H;2(BU,Z) = R[El,EQ,E;;, .. ]

where

¢, € Hy"(BU; Z)

for each n and R = Hy (pt;Z) is the coefficient ring.
Furthermore, let ©,, , denote the fundamental class of K(Z,R™™). Then with respect to
the splitting (6.1) the natural Zo-map

P:BU — Z&

satisfies

P* (Thn) =¢n
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Note . The first assertion of Theorem 6.12 is due to Dan Dugger [D] and the second to
dos Santos [dS].

Theorem 6.12 shows that the inclusion map ¢ : BU — Z2°(1) naturally classifies the
total Chern class in (full ROz,-graded) equivariant cohomology. Thus for Real spaces X,
¢ determines a natural transformation

¢:KR(X) — PH; X 2)
n>0
and the property that ¢(V & V') = ¢(V)#c(V'), together with Theorem 6.12, shows that
AE@GE') = ¢(E)UE"

for all E,E' € KR(X). Theorem 6.10 shows that the equivariant infinite loop structure
on Z&(1) corresponding to the spectrum Mg makes this total Chern class map ¢ an
equivariant infinite loop map. This is the full Z;-equivariant version of Segal’s conjecture
settled in [BLLMM]J.

In fact under the forgetful functor the class ¢ becomes the ordinary total Chern class
¢, and the map ¢ : AR — M¢ of equivariant spectra becomes the map ¢ : Au — Me of
non-equivariant spectra studied in [BLLMM].

More interesting perhaps is the restriction of ¢ to the fixed-point set BO C BU. This
gives a characteristic class for real bundles which is a mixture of Z and Z, classes and
satisfies Whitney duality. We examine this next.

§7. A new total characteristic class. The mappings
P Gg(P(V)) — Z(P(V))
which stabilize to
P:BO, — Zg and P:BO — Zg°

represent a “total” characteristic class which is in complete analogy with the total Chern
class:

c: Ge(P(V)) — Z¢(P(V))
c:BU, — Z§ and ¢c:BU — Zg°
and the total Stiefel-Whitney class:
w: GR(P(V)) — Z%(P(V))
w: BO, —>§ and w:BO — 2
This new class has the property that for real vector bundles £ and F' over a space X,

(7.1) P(E® F) = P(E)UP(F).
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As a map from BO to Zg° it is an infinite loop map. It fits into a pattern of infinite loop
diagrams as we saw in §6. This compelling picture makes the further study of P intriguing.

Recall that we have a commutative diagram:
Z¢
/
P
BO —— Zg°
\

2y

where the upper map represents the total Chern class of the complexification (essentially
the total Pontrjagin class) and the lower map is the total Steifel-Whitney class. However,
P contains much more information. From the splitting in Theorem 3.3 the map P is seen to
represent a certain sum of integral and mod 2 cohomology classes. Thus P is a particular
arrangement of Pontryagin and Stiefel-Whitney classes. Exactly which arrangement has
been determined by dos Santos.

Theorem 7.1. ([dS]) For k < n, one has
P*(tn ) = quwn

where Sq* denotes the k™ Steenrod operation and w, denotes the n't Stiefel-Whitney
class.

When k = n and n is even, P*(t,, ) is the n'" Pontrjagin class p,.

There is a second construction that one can associate to Real bundles.

Construction 7.2 To a Real map f : X — G7(P(C")) classifying a Real bundle Ey — X,
we associate the mapping N
F:X/2, — ZUP(CN))"

defined by f([z]) = f(z)+ f(px) = f(x)+ pf(z). Let ¢y, ; denote the fundamental class of
the factor K (I, x,n + k) in the canonical splitting of Zg given in Theorem 3.3. Then

Fenk) € H(X/Zs)
is an invariant of the Real bundle E;.

Example 7.3. Consider the commutative diagram of Real spaces

pPr . Gn(P(CY))

l

Zy(P") —— Z"(P(CY))
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where the left vertical map is the standard inclusion, the horizontal maps are complex
suspension, and the right vertical map is our Z,- characteristic map. Let Pk c P7
be the Real spaces which are introduced in the proof of Theorem 9.1. Composing with
suspension gives a Real mapping P** — G*(P(CY)), for which 7.1 yields a map f:
Prk/7, — Z4(P(CN))®?. Tt follows from the discussion (9.11) ff. that the corresponding
classes f*(en’k) are non-trivial for 0 < k < n.

Note 7.4. Let ﬁ(E) denote the total class of a Real bundle E constructed in 7.2. Then
we have

P(E@E') = P(E)#P(E')
This class satisfies the addition relation:

P(EGE)+P(EGE) = P(E)#P(E')

68. PROOF OF THEOREMS 3.3 AND 3.4

Consider the Real vector space (C"*! 1) where 7 is complex conjugation, and denote
the corresponding projective space by P¢ and its real form (the 7-fixed-point set) by Pg.
Our first step reduces everything to the case of 0-cycles.

Proposition 8.1. Fix integers ¢ < N. Then

a. Iterations of the algebraic suspension give canonical homotopy equivalences:
2x(Pg) = 2x(Pg) = Zom(PE),
ZUPE)" = ZUPL)" = Z0(PE)™,
ZH(PY) = Z(PL) = Zom(PY).
b. The short exact sequence of topological abelian groups:
0 — ZUPL)" — ZL(PL) 5 ZL(PL) — 0.

is a principal fibration.

Proof. Part a follows from repeated applications of Theorem 3.2. To prove part b, con-
sider the monoid ¢ & g0 SPd(Pg:)f” and its closed submonoid ¢! & Hy>o SPa (PE)*.
Note that the naive group completions of C and C" are Z(PE) and Z4(PL)*", respectively.
Since complex conjugation induces a real analytic map on all products SPy(PE)xSPy (PE),
preserving filtrations by degrees, one can provide equivariant triangulations to all such
products, making (C,C") into a triangulated pair. It follows that (C,C') satisfies the
hypothesis of [Liy, Theorem 5.2], which then implies the desired result. ]

The next result makes thorough use of the identification of P& with the n-fold symmetric
product SP"(P¢) of Pg, and the fact that the complex conjugation involution on PZ is
induced by the complex conjugation 7 on P§ under this identification. We are grateful to
the referee for a very nice technical improvement of our original version of this Proposition
which was based on a construction in [FL].

For any compact space Y let Z¢(Y), denote the connected component of 0 in Zy(Y").
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Proposition 8.2. There exist canonical equivariant homeomorphisms

(8.1) 2UPE) = [[{2(PL)/Z(PE)} = Zx [] Z20(5*),
where
(8.2) S§?" = C"U {0} = PE/PL!

with Z,-action given by complex conjugation.

Proof. Choose a basepoint oo € P¢ which is fixed under the complex conjugation 7, i.e.
a real point. Then, for each n < ¢, the canonical inclusion

¢ =SP"(P¢) — P¢ =SP!(Pg)

o — o4(¢g—n) o0

(8.3)

is Zy-equivariant and induces an injective equivariant homomorphism
(8.4) Zy(Pg) — Zo(Pg).

We now define a continuous equivariant homomorphism p, : Zo(Pg) — ZO(P%_l) by
setting

(8.5) palri - tay) = > (1) Va4 (g1 1)) o0)
IC{1,..,q}

for points xy +--- + 2, € SPq(P%:) = Pg: and extending linearly. Here z; = x;, + 2, +
-+ 2y, with k = |I|, and as always we take 7 + (¢ — 1 — |I|) - 00 € SPI~HPL) = PL™!
It is straightforward to verify that this mapping is a continuous retraction onto the
subgroup given in (8.4) with n = ¢ — 1. Thus we obtain an equivariant direct product
decomposition of topological abelian groups

Zo(PE) = Zo(PLT) x (Z0(PE)/Z0(PE))
which under iteration yields a canonical equivariant direct product decomposition

Z(PY) = [ Z2(PL)/Z0(PE).

Now note that Zo(P%) = Z and Zo(PL)/Zo(Pe™") = Zo(PR /P 1), for n > 0. O

Applying the averaging, fixed-point and quotient functors gives similar (non-equivariant)
splittings for our real cycle spaces.
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Corollary 8.3. There exist canonical direct product decompositions of topological
abelian groups:

q q
(8.6) Zy(PE)" = 2Zx [ 20(5°"),", Zom(PL) = Zx [ 2o(5°")]"
n=1

n=1

where projection onto the first factor is the degree. These splittings are compatible, and
the fibration in 8.1(b) splits as a product p = [[,, p» of principal fibrations:

(8.7) 0 — Zo(S2M)" — Zo(82™)Fir I 2 (S™), @ Zy — 0

for n > 0 and the projection pg : Z — Z5. In particular we obtain a canonical direct
product decomposition

(8.8) Zor(PE) = ] 20(5™)p 02, = HA Zy,n

Proof. The first assertion and the compatibility of the splittings follow straightforwardly
from 8.2. Notice that one has canonical topological isomorphisms

Zo(SMI [ Z0(S™)," =2 Z0({STH ), @2, 2 Z(S"), © 1,

for n > 1 and that Zo(S™), @ Z2 = K(Z3,n) by the Dold-Thom Theorem [DT]. This
establishes (8.8). The fact that the maps p, are principal fibrations follows from [Liz,
Theorem 5.2] as in the proof of 8.1. U

The next technical result is clearly needed for our subsequent computations.

Lemma 8.4. For any compact space X with a Z,-action there is a natural degree-
preserving topological isomorphism: Zo(X)* = Zy(X/Z,), and therefore by the Dold-
Thom Theorem

T Zo(X)" = Hp(X/Z4; Z) for all k.

Proof. Consider the topological homomorphism ¢ : Z¢(X) — Zo(X)* C Z¢(X) defined
by ¢ (o) = 0 + 7 * 0, where 7 * o denotes the action of the generator of Z; on 0. Since X is
compact, it follows from the description of the topology of Z¢(X) that ¢ is a closed map,
which clearly surjects onto Z¢(X)*”. The composition X — Z¢(X) — Zo(X)*" clearly
factors through the projection 7 : X — X/Z, , and hence the universal property of the
functor Z¢(—) gives a continuous homomorphism ¥ : Zy(X/Zs) — Z¢(X)* such that
U om, =1, where 7, : Z¢(X) — Z0(X/Z3) is the projection induced by #. It is a routine
verification to see that W is injective, and hence a closed continuous bijection. L

Proposition 8.5. For each n > 0 there exists a canonical cross-section of the principal
fibration (8.7). Therefore there exist canonical splittings:

Zo(ST = 20(57))" x Zom(SP)
for n > 0, and so also a canonical splitting:

(8.9) Zor(PL), = Zo(PL)L" x Zor(PL)
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Proof. We want to produce a canonical homotopy section for the fibration Zo(5%")%" —
ZO(SZ")ZW — Z(S™), @ Zy where S?™ is the one-point compactification of C" and S™ C
52" is the sphere of real points. Define

fix

(2]

e: 8" — ZO(SZ")

by €(x) = & — T oo, where o, is the base point, and let €, be its extension to Z¢(S™) Then
there is a commutative diagram

Z(5"), —— Zo(52m)I
(8.10) Ql lp
Z6(5M)y T, Zo(§2m)I 1 2o (52m)2,

where () and P denote the quotient maps.

Let fy : S™ — S™ be the map of degree 2, fixed in Appendix A, §A.1. It follows from
standard properties of H-spaces that eo f; is homotopic to 2¢, and it is clear that the map
2e factors through the averaged cycles ZO(Szn)Zv. On the other hand, it is easy to see that
one has homeomorphisms

{PE/PeT )Ty = S7" [T, = S"$#Py ™,

where # denotes the real join of topological spaces. Combining this fact with Lemma
8.4, one obtains that Z,(S*")" = ZO(P%/Pg_l)ZU >~ Z,({P& /P& ""'}/Z3),, and the latter
space is (n 4 1)-connected. Therefore, 2¢ is homotopic to zero.

Now, Lemma A.1 and Corollary A.4 provide a canonical map

H: Z0(S™), @ Ty — Zo(S*"))™,
unique up to homotopy, with the property that
(8.11) HoQ ~e,.

Let us apply Corollary A.4 once again, with Y = Z((S"), ® Z2 and h being the com-

position S™ ER Zo(S™)o A Zp(S™)o @ Zy where j(x) = ¥ — 2. Using (8.11), we obtain
(PoH)o@ =~ Poe,, and since Poe, = @, cf. (8.10), we conclude that

(PoH)oQ~Q=1idoQ =(Qo07])..

Therefore both (P o H) and id satisfy the same condition in Corollary A.4, and since
Tnt1(Z0(S™) @ Z2) = 0 one obtains P o H ~ id. Therefore, H is the desired homotopy

section of P. This proves the first assertion. The second follows easily from 8.3. L

There are two distinct ways to complete the computation at this point. The first one
occurs at the space level and the other, suggested by the referee, takes place at the level
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of simplicial groups. The first is elementary and involves the Dold-Thom Theorem [DT],
while the second has a more “motivic” nature. We shall present them both.

First, apply Lemma 8.4 when X = S$?" = C" U {c0}, under complex conjugation
and n > 0. Since §2"/Zy, = S"#Pr~', one has Hy(S*"/Z4;7) = Hi(S"#Pa ™' 2)
= ﬁk_n_l(P_l;Z). Hence the spaces S*" /7, satisfy the hypothesis of Theorem A.5
and we obtain a canonical splitting

2n

Z0(SPM)5" = Z0(S*" L), = || K(HW(S™" /22 2), F)
k=0
2n .
>~ J[ E(Hi—na(Pg2), k).
k=n+1

Together with (8.6) and Proposition 8.1 this splitting yields the following.

Theorem 8.6. The group of averaged cycles of codimension ¢ and degree 0 in PY is
connected and has a canonical splitting into products of Eilenberg-MacLane spaces
q

2P, 2 [T ] K (Heer (PR 52), k).
k=1

n=0
av

The homotopy groups ﬁ*(Zq(Pg)(w) have the structure of a bigraded abelian group m.(Z4(PX)"")
@n,kZO sz)k where
Lt = Tk { 20(PE/PE)o} " 2 Hia (PR 2),
forn+k >0, and Iy o = 2Z. In other words,
2Z , ifn=k=0;
- 0 ,ifkisodd ork >n,orn>gq;
.k Z ,ifk=n<qgandk>2is even;
Zy , ifk<n<gqgandk>2is even.
This is just Theorem 3.4. Combining it with (8.8) and (8.9) proves Theorem 3.3.

~

Remark 8.7. note that the results in this section prove in particular that:

(1) The inclusion 7 : Z4(PY)"" — Z&(PY) induces an inclusion of homotopy groups as
direct summands;
(2) The inclusion Z%(PY) — Z—H(IF"g"H) induced by the inclusion of PY as a linear

N+1
PC

subspace of induces an inclusion of homotopy groups as direct summands.

We now present an alternative approach to prove Theorem 3.3. Let X = |X,| be the
geometric realization of a simplicial set X, on which the group Z, acts simplicially, and let
Z(X,) denote the simplicial free abelian group generated by X,. Note that Z(X,) becomes
naturally a simplicial Z;-module under the induced action o : Z(X.) — Z(X,).

If Z5-Mod and Ab denote the categories of Zs-modules and abelian groups, respectively,
then the functors

Ker(l—o0) : Zy-Mod — Ab and Im(l+o0) : Zy-Mod — Ab
are additive functors which send a Zs-module M to M /™ and M®?, respectively.
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Lemma 8.8. With X, as above:

(1) One has a natural equivariant identification Zy(X) = |Z(X,)|.

(2) Under this identification one has Zog(X) = |Z(X¢)"**| and Zo(X)"" = |Z(X.)""].
In other words, the real and averaged 0-cycles on X are obtained as the geomet-
ric realization of the simplicial abelian groups obtained by applying the functors

Ker(l—o0)and Im(1+0) to Z(X,).

Proof. We leave the proof of this rather straightforward fact to the reader. U

Proof. [of Theorem 3.3 (2nd version)] Let S™! denote the simplicial set with two zero-
simplices 0 and oo (oo is the base point) and two non-degenerate 1-simplices. Give S':! the
trivial Z5 action and note that its geometric realization is the circle seen as the one-point
compactification of the trivial representation R. Now, let S%! denote the same simplicial
set with the Z, action that interchanges the two 1-simplices and keeps the 0-simplices
fixed. The geometric realization of the latter is the one-point compactification of the sign
representation. Denote S™" def (SHHA and SO def (S0 1ynn,

It follows from Proposition 8.2 that the theorem is proven once we compute the homotopy
groups of Zy g(5?"),, where $*" is the one-point compactification of C". It follows from
Lemma 8.8 that Zy g(5*"), = |i(5"’" A S%™)|, where, for any equivariant simplicial set
X, z(X.) denotes the kernel of the natural augmentation Z(X.) — Z.

Remark 8.9. Given X, as above, the homotopy groups of |z(X.)| are obtained as the
homology of the normalized chain complex Z,, 5, (X, ). Similarly, the homotopy groups of
|Z(X,)/"*| are given by the homology of the complex Z,,,m( X, )7, which is easily seen

to be the normalized chain complex associated to the simplicial abelian group Z(X,)/'*.

Notice that the normalized chain complexes of Z[Z3]-modules inorm(sn’") and inorm(so’")
both have the form C,, — C,,_; — --- — Cj, and both have just one homology group in
degree n. In the first case, this group is simply Z with the trivial Z,-action, and in the
latter the n-th homology is Z(n), i.e. the group Z with Z, action given by multiplication
by (—1)™.

It follows that one has an equivariant homotopy equivalence

(8.12) Ly orm(S™") = Z[—n],

where 7 is seen as a Z[Z»]-complex concentrated in degree zero, and Z[—n] is its usual shift.

As to inorm(so’"), first observe that all terms C; are free Z[Zs]-modules, except for
Cy, since the only non-degenerate simplices in S%" fixed by the action of Z, are zero
dimensional. Now, denote A* = Homg(Cp—;,Z) and observe that one obtains an exact
sequence

A" — o = A = Z(n) — 0,

where the A%’s are free, except in dimension n. Here, we use the fact that one has isomor-
phisms of Z[Zs]-modules Homz(Z[Z;5],Z) = Z[Z;] and Homgz(Z(n),Z) = Z(n). It follows

that this exact sequence is a truncated (at level n) projective resolution of Z(n) in the
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category of Z[Z;]-modules. Applying the functor Homg,(Z3,—), and using the fact that
Homg,(Zy, M) = M/ for any Zy-module, it follows that the homology of Z,,pppm (5% ™)/
is given by:

H""8Z,,2(i)) ,for0<k<n

8.13 Hi(Znorm(S"™)™) =
( ) K ( ") {() , for k> nor k <O.

The (equivariant) Kiinneth formula gives an equivariant homotopy equivalence inom(s BTN
SOy 2 e (S™™) @ L porm (S®™) which, together with (8.12) gives an equivariant ho-
motopy equivalence

znorm(sn’n A SO,n) = znorm(so’n)[_n]a

hence znorm(S"’"ASO’")fix &~ znorm(so’")f”[—n]. This equivalence, together with (8.13),
gives the desired computation:

7Tn+k(ZO,(52n)) = Hn-l-k( norm(so n)fw[ ]) = Hk( norm(so n)fw)

These cohomology groups are well-known and seen to coincide with the groups I, . This
concludes the alternative proof of Theorem 3.3. L

We now sketch an answer to Question 5.3, using the techniques developed in the proof
above. The inclusion Zgg(S5*"), — Z0(5%"), is a homomorphism of topological abelian
groups induced by a homomorphism of corresponding simplicial abelian groups

(8.14) Z(S™™ A SOmyFir _, F( g2y,

In order to understand this map, we invoke the Dold-Kan correspondence which states
that the normalized chain complex functor gives equivalence between the categories of
simplicial abelian groups and chain complexes in non-negative degrees. We have seen that
one has a quasiisomorphism inorm(sw’?") ~ 7[—2n], and (8.13) gives quasiisomorphisms

Z[—2n] @?_/3—1 Zy[—n —2i] ,if nis even

znorm(sn’n A SO,n)fix ~
@(n /2 Zy[—n — 21] ,if n is odd.

Under the Dold-Kan correspondence, the map (8.14) is given by a homomorphism of
normalized complexes, and these homomorphisms are classified by Ext groups (over Z).
In the even case (n > 0) the map from Z[—2n] to itself is the identity, since the generator
of T9,(Z0(5?™),) can be obtained using only real cycles. The other components, given by
maps Z[—n — 2i] — Z[—2n], are trivial since they are elements in Exty 2 (Z,,7) = 0.
In the odd case, the only component which may not be zero comes from the map Z[2n —
1] — Z[2n]. Following carefully the computation of the equivariant homotopy type of

Z0rm(S%™) one obtains that this cohomology class is precisely (3(225—1)-

§9. The ring structure. The algebraic join of cycles, defined for example in [Lq], [Ls],
and [FM] is equivariant with respect to conjugation and defines biadditive pairings

ZE(P™) A ZD%/(P"/) — Zn%—i'ql(lpn'i'"/'i'l). This induces a pairing
#:Zg NZ2g° — 2R,
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where Zg° = lim, —oo Zg(P™), which makes Zg° an E.-ring space. (See §6.) The
induced map

(9.1) T+ 2R QT Zg — T«Zp

makes 7, Zg° a graded ring. In this section we shall compute this ring and give explicit
representatives for the generators.
To set the background we recall two analogous cases. Let

Z% = lim ZYP") and  Zg°= lim ZL(P").

n,§—0 n,§—0

These are Eo-ring spaces as seen in [BLLMM], and their homotopy groups form graded
rings. Results from [FM] establish an isomorphism

(9.2) T2 2 7[s]
where s corresponds to the generator of 79 Z2%° = 7. Results of [Lam| show that
(9-3) . 2R = Lo[y]

where y corresponds to the generator of 7 2 = Z,. The main result of this section is the
following theorem which neatly organizes the additive results of §8. Let Z5° C Zg° be the
subspace defined by taking the limits of the subgroups ZZ (P") C Zg(P™) as above. Note
that the join of an averaged cycle with a fixed cycle is again an averaged cycle.

Theorem 9.1. There is a ring isomorphism
(9.4) mZg = Llr,yl/(2y)

where x corresponds to the generator of my Zg°® = Z and y corresponds to the generator of
T 2ZR° = 42, and where (2y) denotes the principal ideal in the polynomial ring generated
by 2y. Furthermore, under this isomorphism the ideal 7,27 C m,Zg° corresponds to the

ideal
(9.5) T Zay = (2,2)

generated by 2 and x.

Proof. To begin we introduce a doubly indexed filtration on 7.Zg° and show that it is
compatible with the multiplication (9.1). Consider the direct sum C* with coordinates
(20,21,%2,...); 2j = xj + tyj, and for each n set C"*!' = {~> € C>* : z; = 0 for j > n}. For
each k, 0 <k <n , we consider the conjugation invariant subspace

vk = {zeC™  y; =0forj >k} = CFaRMTITR

and set

Pk = x(V" — {0))
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where 7 : C"t1 — {0} — P™ is the projection. Note that V™% ¢ V"' * if n < n' and
E <K' and that
dimg PYF = pa k.

Definition. Let Z(P"’k) C Zg(P") denote the subgroup generated by effective cycles
¢ for which

(9.6) dimg ([] N V™) > dime (]¢])

where [¢] = 771(Je]) € C"™! denotes the homogeneous cone corresponding to the support
|c| of ¢. The inclusions Zg(P™*) C ZE(P") C Z5° induce homomorphisms

(9.7) T ZE(PF) — 1 2R

Observation 9.2 The image of the homomorphism (9.7) remains constant under con-
tinuous deformations of C™ through Real subspaces of C*>

Observation 9.3 The homomorphism
W*Z(P"’k) — T 2R

is injective. This follows from the results in 8.6 concerning 0- cycles.

Observation 9.4 Taking algebraic suspension by adding coordinates on the left gives a
commutative diagram

A 1( LR W -

(9.8) i 1] v

je
TR ZR(Prrbk+ly T, g Zeo

where j is injective by 9.3, ¥ is an isomorphism, and i*, induced by the restriction of
the suspension map, is therefore also injective.

We set
Frk L Zg (P

and note that F™* gives a bifiltration of 7,Z5°, namely

Frk o Fr ifn<n' and k<Ek.

~
Proposition 9.5 The homomorphism ¥, in (9.8) is an isomorphism. Consequently,

Frk — Im(35,) for all ¢ > 0.
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Proof. In fact the map Z]i : ZR(PF) — ZR(PTORHY) i 2 homotopy equivalence. To see
this one repeats the arguments of [Lam] which prove that ¥, : ZE(P") — ZE(P"*1) is
a homotopy equivalence, and one notes that all steps preserve the subgroups Zg(P"t1*).
More specifically, there are two fundamental constructions in this proof: pulling to the
normal cone and “magic fans”.

We begin with pulling to the normal cone. Let’s introduce homogeneous coordinates

(z,2) € CF @RIk = Yk ¢ € and (¢, 2,2) € C @ CF g Rk = pntlitl
C"*2, Consider the multiplicative flow ¢, on P"*! defined in homogeneous coordinates
by wi(€,2,2) = (t€, z,2) for t € RT. This flow induces “pulling to the normal cone” in
[Lam]. It evidently preserves condition (96) above, and therefore preserves the subgroup
of algebraic cycles Zg(PnThi+l)

In the “magic fan” construction one adds a new coordinate giving (n,¢,z,2) € C &
CoCrg R =F = Cq Vnthbitl To each homogeneous polynomial f(n, ¢, z,z) with
real coefficients one constructs a transformation ®; : ZE(P"™) — ZL(P"!) by setting
®4(c) = (m1 )« (7ic @ Dy) where Dy is the divisor of f, and 7o, 71 are projections Pgt? ... >
P! with vertices (1,0,0,...,0) and (1,1,0,...,0) respectively. We need to check that
this construction preserves the subgroups Zﬂ%(ﬂ:""'i'l’k'i'l). For this let ¥ C C"*2 denote
the homogeneous cone of a projective variety ¥ C P**!. It will suffice to show that

(9.9) dimng (VN V™HRT) < dimg ((@1) 0 v

To see this consider a point a € Y with homogeneous coordinates (¢, z,x) € Y nyntLEtl
Let n1,...,n4 be the zeros of the polynomial ¢(t) = f(¢,€,2,2). Then 7, '(a) N Dy
consists of the d points with homogeneous coordinates (n;,&,z,z), j = 1,...,d, and
S| <7r0_1(a) N Df> is the union of the d points with homogeneous coordinates (n; — ¢, 2, ),
j =1,...,d. Note that each of these points again lies in V"t ¥+l Tt follows that con-
dition (9.9) holds as claimed. Therefore the arguments of [Lam] apply without change to

show that ¥ is a homotopy equivalence, and we are done. ]

The analogues of 9.2 — 9.5 apply also to the averaged cycles:

Z1,(Pmh) = Zg(P™h) N Z4,(P")

One obtains a bifiltration F%* of 7, Z°¢ where the n-filtration agrees with that of Theorem
8.5. Under the isomorphism 7,22 = H,(X>;Z) deduced in §8 (See 8.3), consider the

classes
(9.10) O = [PVE)2,) € Hyyh(X 1) 2wy 1 225 for 0<k <n.

Note that the intersection of P™* with the affine coordinate chart Pg — Pg_l =C" =
R" & iR™ is exactly R" & iR*. Therefore, the image of 8, in the homology of X"/X" ™1 =
S27 /74 is the class S"#P_l. Hence this image generates the group I;" in the bigrading
established in Theorem 8.5.

It follows that
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f:v’k = spang{f, p : n' <n and k' <k},
and furthermore that under the injection 7,2y — 7. Zg° we have that
(9.11) Frk — Frbng, 2z
In particular, we deduce that for 0 < k£ < n

def k
av del rp, oo _
n,k — Fav N 7Tn+kZav - <9n,k>

o f‘n,k/f'n—l,k D :/t'n,k—l
and I3 = {0}. For 0 <k < nset I, = Frkn Tntk 2R - From Theorem 8.2 we know
that I, o = m,{Zy(P — C"/P — Cn=1),}/1® = 7,. Let 6,0 denote the generator of I, .
(an explicit representative will be given later). Then we have that for 0 <k <n

def p 0o

In,k = Frk N Ttk Zlr = <9n,k>

o Fn,k/f'n—l,k D Fn,k—l

It is useful to picture the graded peices I, j on the (n, k)-coordinate grid.

kT
VA
0 0
Z I, 1,
0 0 0 O
Z Iy, 1y Iy 14
0o 0 0 0 0 O
2 Iy 2, Iy 2o Iy 1,
o 0 0 0 0 0 0 O
Z 1y Iy 2o 1y Iy L2y Iy 12y
o 0 o o0 o0 o o0 o0 0o 0 ...
7 ZQ ZQ ZQ ZQ ZQ ZQ ZQ ZQ ZQ ZQ ce —

The graded subgroup I% C I, x looks like this:

kT

VA

0 O

Z I, 1,

0O 0 0 O

Z 1, 1, I, I,

o 0 o0 0 0 0

L 2y Iy 25 2y 1y Z,

o o o 0 o0 0 0 0

L 2y 1y 245 o Iy 2y 1y 244

oo o o0 o0 o0 o0 0 0 0
2 0 0 0 0 0 0 0O 0 0 O —



Note that I, 1 = szk for £ > 0 and lf*,* = I, /12% is simply:

K

k1 O 0 0 0 0 O
o o0 o0 0 0 0 O
o o o 0 0 0 0 0
o o0 o0 o0 o0 o0 0 0 0
o o o o0 o0 o0 o0 0 0 0
ZQ ZQ ZQ ZQ ZQ ZQ ZQ ZQ ZQ ZQ ZQ —

Our main observation here is the following.

Proposition 9.6. The filtrations F"'* and F/“* are compatible with the join pairing, i.e.,
# <Fn,k ® Fn',k') C Fn—l—n',k—l—k' and # <F:v’k ® F:\:’k/> C F:V-I-n',k-l-k'
Proof. By Observation 9.2 the join gives a well defined homomorphism
T Za(PPR) @ m, ZE (PP — gzt (et LRER L),

Pushing into 7, Zg° and applying 9.5 gives the result for 7**. The argument for F}3* is
similar. (|

Lemma 9.7. The generators 039 € mZg° & myZ% = £ and 6,y € m Zg° have the
property that
92’2 € F2’2 and 91’0 € Fl’o

Proof. Recall X7 = PZL/Z,. (See Cor. 8.4.) Under the isomorphisms 7y 21, = 7, Z((X 1) =
H, (X% 7Z)=Z, the generator 65 5 corresponds to the class [X?] € Hy(X?;Z) for any ¢ > 2.
Thus 65 5 € F??2. For the second assertion recall that the generator of m; Zg® 1s given by
the map S — Z¢(Pg) C Z¢(Pg) sending ¢t — t —tg for t € P = S* (where tg € Pg is a
base point ). O

Proposition 9.8.
A) 95’2 = ezk’zk il’.l 7T4kZaO$.

Proposition 9.8 = Theorem 9.1. From results in §8 we have an exact sequence

(9.12) 0 — M2y — T 2R o, T 25— 0

and we know that the elements p*(ef’o), ¢ > 1, give an additive basis of 7.Zg°. In fact,
P« 1s a ring homomorphism and p.(6; o) corresponds to y in (9.3).
We have seen that under the identification

TuZay = H (X Z)
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the bifiltration of 7, 22 corresponds to the bifiltration of H,(X>°;Z) induced by the family
of subspaces P™* /Z, in X*°. From the results of §8 we have that

F*’Odd =0
av
and Z-0 if ¢
*U2k2k 1 =0
‘;E'aZ\{C-i-f,Zk N 7T4k—|—£Zao\? _ { ‘
ZQ . 92k+f’2k if / > 0.
Since
k 14 k+0,2k
034610 € Foro N ngge 227,

the conclusion of Proposition 9.8 implies that 95’2 . {9{’0 = Ookt0,2k- O

Proof of Proposition 9.8 We begin by constructing explicit representatives of 6y ¢ and
92’2.
Consider S' = Pg C Pg, the fixed- point set, and choose a base point t; € S*. Define

(9.13) a: S — Z(Pl)
by
alt) =t —t.

This map clearly has filtration level (1,0) since the image is supported in Pg. One sees
directly that under the projection p, : Zg(P') — Zvu%g(ﬂ:"%:) = Zy(Pg) ® Z5 the map
P« 0 a represents the generator of m1(Zy(Pg)) = H,(Pg; Z2) = Z,. Hence « represents the
non-zero class 61 ¢ in m Zg° = Z5.

Consider Py C Pg as the “equator” and let D* C Pg be the “upper hemisphere”, (so
Pt = D*U D? where U is the conjugation map). For each n > 1 we define a map

(9.14) Bn (DY) — ZM(PET

by

Note that 8,(t1,...,t,) = 0if t; € D? = Pk for any j. Thus 3, descends to a map

B SEAASE=82" s ZM P,
Note that f1(t) = —p1(t), that is §; maps into anti-averaged cycles. The join of two
anti-averaged cycles in an averaged cycle. Since §,(t1,...,tn) = Bi(t1)# ... #0n(tn) we
see that B
611 : SZn - Z:V(P?:n_l)

whenever n is even.

From Observation 9.5 we see that the class [3,] of 8, : S* — ZZ (P?) = Z2 (P*?)
in 74 Z2° has filtration level (2,2). It follows that the class [3,,] = [F2]" € T4, Z5° has
filtration level (2n,2n).
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Lemma 9.9. The map 3, : $*" — Z"([F%"_l) represents the generator of m9, Z>° = Z.

Proof. Recall that 3, : (D?,0D?) — (Z¢(Pg,0) is given by 34(t) =t —t. To compute
the class of 3, in T Zy(Pg) = Hy(P&;Z) we take the graph T'(3;) in S? x P& and push
it forward to P& (cf. [FL]). Now T'(3,) is an oriented cycle which is the union of two
oriented disks Iy UT. The disk Ty is the graph of the identity map D? — D3 on the
upper hemisphere with the canonical orientation from D?; the disk I'; is the graph of the
conjugation map D? — D% from the upper to the lower hemisphere with the orientation

opposite the one given by D? due to the minus sign in 3,. Note that Ty UT; C S? x P&
is an oriented 2-sphere homeomorphic to Pg under projection to the second factor.

This shows that 3, represents the generator s of T, 2%, It follows that 3, = 3,# ... #5,
represents s" € 7y, £2°°, which is the generator by 9.2. ]

Lemma 9.10. For any N > 2n, the homomorphism I, : 74, Z2MPY) — 74,2, in-
duced by the inclusion i : Z27(PY) « Z°°, is an isomorphism.

Proof. By the Algebraic Suspension Theorem [L;], [LLM,] it suffices to consider the map
of O-cycles Z2MP&') — Z2"(P#"). Note that the composition

ZPY) = Z(PY) — Z0(PY)
where av(x) = « + 7, is multiplication by 2, and so therefore is the composition

Tx ava

Tun 20 (PE) —— mun 22" (PE) —— 1 220 (PEY)

| I |
z z z

On the other hand the homomorphism av, can be identified with the homomorphism
ps  Hin(Pg"Z) — Hyn(PE'/Z4;7) where p : PE* — P& /Z; is the quotient map. This

map clearly sends the fundamental class [P3"] to 2[Pg"/Z,]. Hence av, = 2 and so i, must
be an isomorphism. ]

Corollary 9.11. The map 3, represents the generator 62 5 of 4 22 (Pg). Furthermore,
for all n > 1 one has that 95"2 =8 n.

35



Proof. The first assertion follows immediately from 9.9 and 9.10. For the second we recall

that [B,,,] = [B5]™ in . 222, and use (9.2). O

This establishes part A ) of Proposition 9.8. For part B) we invoke the following. Consider
a continuous map f : S™ — ZZ(PY) and let p : PY — X% be the projection. Then
pof(x) = 2f(x) where f : S™ — Z9(X") is a continuous map into cycles on X V. Assume
that f is well enough behaved to have a graph T'y in S™ x PZ (cf. [FL]). Then (1 x
p:)[Ly] = 2[T'f] where T's is a cycle on §™ x X which we will call the graph of f. Let
pr: S™ x XV — XV be projection.

Lemma 9.12. If [pr,T'f] # 0 in H.(X";Z), then [f] # 0 in 7, 24, (PZ).

Proof. Suppose f : D™t — Z4 (PY) extends to a continuous map F : D™T! —
Z4 (PY) which we may assume to have a graph. Then the integral chain pr,I's has
boundary pr.l'; in XV, ]

To detect homology classes in XV we will use the following.

Lemma 9.13. Let Z C XV be an integral cycle of codimension { < N defined by the
oriented regular set of a real analytic subvariety. Let PY < X = PY/Z, denote the
singular set of X~. Suppose there exists a compact oriented submanifold V¢ — X~ —Pg¥
of dimension { which meets the regular set of Z transversely in one point. Then [Z] # 0

in Hyy—o( XN 7).

Proof. Let M = XV — ([F%@f)E where (|]:")E is a tubular neighborhood of P@f whose closure
does not meet Y. Note that M is a smooth compact oriented manifold with boundary.
The restriction Z, = Z N M defines an integral cycle of codimension ¢ on (M,0M), and
Y defines a cycle of dimension ¢ on M. The intersection hypothesis implies that [Z.] # 0
in Hyn_o( M,0M) = Hyn_ o XV, PY). In the long exact sequence for the pair (X, P§)
we have
Hj(PR) — Hi(X") = Hy(x".Py),

and it is clear from the construction that r([Z]) = [Z.]. O

To complete the proof of Proposition 9.8 B) we consider the map
f= ano/ . gant2l Zzn-i—z(PEL:nH—l)

where we may assume that ¢ is odd. This map can be coordinatized as follows. Choose
affine coordinates @y,...,Ta,,y1,...,y¢ on Pg X -+ X Pg ((2n + ()- times) and restrict
them to

Im(2;) >0 and Im(y;) =0 for all 1,7.

Let A, = span(1l, ;) and A, = span(1,y;) in C*. Then
Fley) = ey = dap)# o #(Aes, — Aam) # Ay — A)# - #( Ay — Ao)-

Note that f = av o f where

f(xv y) = /\m #(/\m - /\E)# s #(/\952n - /\m)#(/\?h - /\0)# s #(/\yz - /\0)
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Consider the affine chart C*"t2(-1 op P(C2 @D Cz) = P(C4"+2f) given be setting the
first coordinate equal to 1. Let CN/ZZ be its image in XY where N = 4n + 20 — 1. Theri
Z = pr,(I'f) is an analytic cycle whose image in CVN /7, is described as follows. Note that f

expands into 22"~ factors. However those factors containing the constant Ay project to
0 for dimension reasons. Thus it suffices to consider the remaining 22"~ factors. Upstairs
in CV they are subsets of the form

Zygoqy = U{xl—|—span(((),1,:1:2,0,...,0),(0,0,0,1,:1;3,0,...,0),...,(O,...,0,1,:1;2”,0,...,0),
(0,...,O,I,yl,o,...,()),...,(0,...,0,1,yz)>}

where the union is over all x,y with Im(y,;) = 0 for all ¢ and +Im(z;) > 0 depending on
the choice of + or — in the j™ subscript of Z44...+. These sets can be rewritten as

Zygqy = {(22,...,Z4n,w1,...,w2g) : Im(z2) >0,
+Im(Z3;722;) >0 V7 > 2, and Im(wz;—qwy;) =0 Vi}

The union of these, with orientations adjusted for signs, is the oriented semi-analytic set
7 = {(Z,w) eCcnl x Ct Im(z2) >0 and Im(wz;—1w2) =0 Vi}

Thus, in this coordinate chart CV/Z, our total cycle 'y C XN is exactly the reduced
image of the real analytic variety defined by the equations Im(wz;—7wsq;) = 0, i.e.,

Tfﬂ(CN/Zz) = %p*{(z,w) : Im (W —qwa;) =0 Vi}

where p : CN — CV/Z, is the projection.
Consider now the sphere

Y = {(0,0,...,0,1,it0,1,it1,...,1,itg) :t; €ER Vi and th:l}

and let YV = ,0(17) >~ P be its reduced image in CV/Z, ¢ X». Note that ¥ misses
the singular set p(RY) and ¥ meets I'; in exactly one point, namely the conjugate pair
corresponding to t; = --- = t; = 0 and tyo = £1. One easily checks that this is a regular
point of Y. This completes the proof. oo

§A. Appendix: Splittings and Eilenberg-MacLane spaces.

A.1. Models for Eilenberg-MacLane spaces

In our discussion, the preferred model for the Eilenberg-MacLane space K(Z,n) is
Zy(S™),, the connected component of 0 in the topological abelian group Zy(S™). If N
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is a finitely generated abelian group, then Z(S™), @z N is our model for K(N,n). Note
that this model for K(N,n) is a topological R-module, and in particular, this model for
K(Z,,n) is a p-torsion group.

Now, for each p fix a map f, : 5" — S" of degree p, and define

M(Z,,n) € D" U,y 5™
This is a Moore space satisfying
~ Z if j =k
Hi(M(Z,n)2)={ "
H{(M(Zyn);Z) { 0 otherwise.

It follows that we have yet another model for K(Z,,n), namely, the torsion free abelian
topological group Zo(M(Z,,n)),. We need to establish a few properties of M(Z,,n) and
of Zo(M(Zp,n)),.

Consider the canonical inclusion ¢ : S™ — M(Z,,n), and let F, : D"*' — M(Z,,n)
be the canonical map which induces the relative homeomorphism F, : (D"*1 $§™) —
(M(Z,,n), S™) and satisfies FP‘aDnH: fp-

The following result is rather standard.

Lemma A.1. Given amap h: 5" — Y such that ho f, is homotopic to zero, then there
is an extension of h to M(Z,,n). In other words, there is an h: M(Z,,n) — Y such that
h o1 = h. Furthermore, if 7,1 1(Y) = 0, then the extension is unique up to homotopy.

Corollary A.2. Let h: S —Y be as in Lemma A.1, and assume that Y is an abelian
topological group.

(1) If h sends the base-point ¥, € S™ to 0 € Y, then one has a commutative diagram

? h
st —— M({Z,n) ——Y

i | [ |-

20(5")y —— Zo(M(Zpn))y —— Y.
T he

where js and jy are natural inclusions, and v, and h, are the group homomorphisms
induced by @ and h, respectively.

(2) If mp41(Y) = 0 then any continuous homomorphism ¢ : Z¢(M(Z,,n)), — Y,
with the property ¢ o1, o jg = h, is homotopic to h, through continuous group
homomorphisms with this property.

Proof. The first assertion is a direct consequence of the fact that Y is an abelian topologi-
cal group and from universal properties of the free abelian group on M(Z,,n). To prove the
second assertion, consider the map ¢ojy : M(Z,,n) — Y. Since (¢ojy)or = ¢por,0js = h,
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one concludes from the proposition that ¢ o jjs is homotopic to h relative to 4, and hence
® = (¢ 0 jar)« is homotopic to h, through homomorphisms as claimed. L

Corollary A.3. Let ¢: Zy(S™), — Zo(S™), @ Z, denote the quotient map. Then there
is a canonical homotopy equivalence ¥ : Zo(M(Z,,n))o — Z0(S™)o @ Z,, satisfying

(1) ¥ is a group homomorphism;

(2) Vo, =gq.
Furthermore, any V' satisfying the above properties is homotopic to ¥ through such ho-
momorphisms.

Proof. Just observe that the composition (g o jg) o f, is homotopic to multiplication
by p in the homotopy group 7,,(Z¢(S™), @ Z,), and hence ¢ o jg satisfies the hypothesis
of Corollary A.2. It is easy to see that the homomorphism resulting from Corollary A.2
induces an isomorphism of n-th homotopy groups and is therefore a homotopy equivalence.
Since ¢ = (¢ 0 js)«, the result follows. L

Corollary A.4. Given an abelian topological group Y and a map h: S™ — Y such that
ho f, ~0, there is a map

H:Z(S"), @2, —Y

satistying H o q ~ h,. Furthermore, if m,41(Y ) =0, then any H: Zo(S™)o @ Z, — Y with
H o g ~ h, is homotopic to H through maps with this property.

Proof. Let ¥~1: Z4(S"), @2, — Z¢(M(Z,,n)), be a homotopy inverse of the canonical
U defined in the previous Corollary, and let A, : Zo(M(Z,,n)) — Y be the homomorphism

established in Corollary A.2. Define H def heoU~! and note that Hog=h,o ¥ togqr~
hy 014 = (E 01)x = hs, where the first equivalence follows from Corollary A.3. This is
the desired H. To prove the last statement note that HoUis homotopic to h, through
homomorphisms extending h. Hence, H=HoUoUis homotopic to h, o ¥~ = H. O

A.2. Canonical splittings

It is a general theorem of J. Moore that any topological abelian group is homotopy
equivalent to a product of Eilenberg-MacLane spaces. However, there are many inequiva-
lent such splittings, and for the results in these papers and in [LM;] one makes a canonical
choice. For the particular examples of cycle groups that we study, the choice depends on
the structure of P" as a symmetric product of P!. However, in many cases the canonical
splitting is determined purely homotopy theoretically. This is the main result of this Ap-
pendix. The existence of a theorem of this type was first pointed out to the authors by
Eric Friedlander.

Throughout this discussion, the ring R will always be either Z or Z/n, and we shall
use the specific model Z,(S™), for the Eilenberg-MacLane space K(Z,n). More generally
for any finitely generated module N over R, we shall take K(N,n) = Z¢(S™), @z N.

Let us fix a finitely generated R-module N and denote K = K(N,n). One has an
isomorphism

hK,R : ﬁn(f&’) @R=N®R — Hn(I(§ R)v
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he®I v
obtained as the composition of isomorphisms NOR = 7,(K)@R N H.(K;Z)®R =,

H,(K;R), where hy is the Hurewicz map and v is provided by the universal coefficients
theorem for homology.
It follows from the universal coefficients theorem for cohomology that

Uir : H'(K;N) — Homp(H,(K;R),N)
is an isomorphism, and the fundamental class ¢, € H"(K; N ) is defined so that W r(ty)
hol

is the composition H,(K; R) LN mT(K)@R=N®®R LR N, where the latter map
gives the R-module structure on N. Therefore,

(A].) \I}I(,R(bn) = MN (0] hRTR

We now examine these maps under the Dold-Thom theorem, which gives natural iso-
morphisms

(A.2) dy g © T(Z0(Y)@R) — Ho(Y:R)

for any CW-complex Y and for all n.
Since K is a topological abelian group, one has a topological homomorphism

(A?)) tr Zo(];&’) — K

tr QI "
such that the composition Zo(K)® R N K®R o, K induces a left inverse

(A4) KR ° Zy(K)®R— K
to the natural inclusion
(A.5) Jrkr @ K — Zo(K)® R.

In the level of homotopy groups, this map fits into a commutative diagram

o~

N@R=m(K)® R ——  Hy(K;R)

hx R

NNl gTdK,R

N=m(E) +— m.(2(K)®R),

o (tK, R)

which together with (A.1) implies that

(A.6) Ui(tn) = pp o hR%R = mp(tK,r)O dR%R.
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We now consider a map f : Y — K = K(N,n), representing a class [f] € H"(Y,N).
From the commutative diagram

N4
H"(Y;N) —— Homp(H,(Y;R),N) —— 0

H"(fﬁ THn(f)*

5%
H"(K;N) —~ Homp(Ha(K;R),N) —— 0

one concludes that
(4.7) By ([f]) = Ty (H(F)in)) = Drclin) o Half)
and (A.6) gives

Uy ([f]) = multr.r) 0 di'p 0 Ho(f).

Let
(A.8) f:Z2(Y)oR—-K
. . .. Zo(f)®1
be the R-module homomorphism given by the composition Zo(Y) @ R ——— Zy(K) ®
t
R " K. This map induces a commutative diagram

T (Zo(f)RI) R (K, R) .
m(Zo(V) o R) 2z o R) Y (K) = N

dY,KJ/ dK,RJ/ H

H,(K:R) — Ho(IK;R) ——— mp(K) =N,
Hy(f) Vi (tn)

where the left square commutes by the naturality of the Dold-Thom isomorphism, and the
right square commutes by (A.6).

It follows that 7,(f) = Ui (tn) 0 Hu(f) o dy,r, and by (A.7) one concludes that

(4.9) wulF) = Uy([]) 0 dy i
We now use the formulae above to prove the following result.
Theorem A.5. Let Y be a connected finite complex and R = Z or Z /n. Suppose that
Uy : H"(Y; H(Y; R)) — Hom(H,(Y; R), H,(Y; R))
is an isomorphism for all n. Then there exists a homotopy equivalence
Z(Y)oz R = | K(Ha(Y; R), n),
Tk>0
unique up to homotopy with the property that:
(i) « is a R-module homomorphism
(ii) The composition
Y C Z(Y)oR -5 [ K(Hu(Y; R), n)
k>0
classifies the identity element in H*(Y; H.(Y; R)) = Hom(H.(Y; R), H.(Y; R)).
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Proof. Unless otherwise indicated all homology groups have coefficients in R.
We first prove existence. For each n there exists a map

fo Y — K(H,Y,n)

which classifies the identity element Id € Hom(H,Y, H,Y), ie., ¥y([f.]) = Id. Now,
define F @ Zo(Y)@ R — [[,,50 K(Ha(Y),n) by F =], 5 fn» Wwhere f, is defined as in
(A.8), and note that F satisfies the two conditions of the theorem.

In the level of homotopy groups one has

mo(F) = 7al(Fo) : u(Z0(Y)) = mu(K(Ha(Y3 R),n)) = Ha(Y: R).

and formula (A.9) shows that 7,(f) = Uy ([fn]) ody r = Idody r = dy,g, the Dold-Thom
isomorphism itself. It follows that ' is a homotopy equivalence.
For uniqueness suppose we are given

Y = Z(0)e6 5 [[EKH.Y.)
JY,R T -

where o and /3 are homotopy equivalences with properties (i) and (ii) above. These proper-
ties imply that avoj is homotopic to foj. Since a and  are R-module homomorphsims and
since jy, g generates Z¢(Y) @ R as an R-module, this implies that & = a o jy is homotopic

to f = ojy. L
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