
  

ALGEBRAIC CYCLES AND THE CLASSICAL GROUPS

Part I, Real Cycles

by
H. Blaine Lawson, Jr., Paulo Lima-Filho, and Marie-Louise Michelsohn

Abstract. The groups of algebraic cycles on complex projective space P(V ) are known tohave beautiful and surprising properties. Therefore, when V carries a real structure, it isnatural to ask for the properties of the groups of real algebraic cycles on P(V ). Similarly, ifV carries a quaternionic structure, one can de�ne quaternionic algebraic cycles and ask thesame question. In this paper and its sequel the homotopy structure of these cycle groupsis completely determined. It turns out to be quite simple and to bear a direct relationshipto characteristic classes for the classical groups.It is shown, moreover, that certain functors in K-theory extend directly to these groups.It is also shown that, after taking colimits over dimension and codimension, the groups ofreal and quaternionic cycles carry E1-ring structures, and that the maps extending theK-theory functors are E1-ring maps. This gives a wide generalization of the results in[BLLMM] on the Segal question.The ring structure on the homotopy groups of these stabilized spaces is explicitly com-puted. In the real case it is a simple quotient of a polynomial algebra on two generatorscorresponding to the �rst Pontrjagin and �rst Stiefel-Whitney classes.These calculations yield an interesting total characteristic class for real bundles. It is amixture of integral and mod 2 classes and has nice multiplicative properties. The class isshown to be related to the Z2-equivariant Chern class on Atiyah's KR-theory.
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x1. Introduction.In recent years a number of results have been proved about the topological groups ofalgebraic cycles on an algebraic variety X over C. It has been shown for example thatwhen X is projective space, these groups provide useful models for basic classifying spacesin algebraic topology and for certain universal characteristic maps between them. Theyalso yield certain new in�nite loop space structures on products of Eilenberg-MacLanespaces which make the total Chern class an in�nite loop map. (See [L2] for a survey.)Now when X has a real structure, it is natural to consider the real algebraic cycles on X.These are simply the cycles de�ned over R, or equivalently, the cycles �xed by the Galoisgroup Gal(C=R). When X is projective space P (V ) the set of real cycles of codimension-qforms a topological group ZqR(P(V )) whose homotopy-type is independent of V [Lam].The �rst main result of this paper is the determination of the topological structure ofZqR(P(V )). We show that it canonically decomposes into a product of Eilenberg-MacLanespaces for the groups Z and Z2. (See Theorem 3.3 below.) The resulting structure is rathercomplicated when compared to the complex case.Our �rst explanation for the richness of this structure comes from considering the colimitZ1R of these groups over dimension and codimension. Here the algebraic join of cyclesinduces a ring structure on the homotopy groups and we show that as a ring
(1.1) ��Z1R �= Z[x; y]=(2y)
where x corresponds to the generator of �4Z1R �= Z and y corresponds to the generator of�1Z1R �= Z2.Now the Grassmannian Gq(P(V )) of codimension-q planes in V includes naturally intoZq(P(V )) as degree-1 cycles. Restricting to real points gives an inclusion GqR(P(V )) !ZqR(P(V )) which stabilizes to a mapping

P : BOq �! ZqR(P1):
This map represents an interesting total characteristic class which, via Theorem 3.3, is anexplicit combination of integral and mod 2 cohomology classes and which has the propertythat for real vector bundles E and F

P (E � F ) = P (E)P (F ):
In x6 we show that Z1R carries the structure of an E1-ring space and thus gives rise to anE1-ring spectrum. The additive deloopings in this spectrum are the standard deloopings ofEilenberg-MacLane spaces. The multiplicative deloopings extend the product in the groupof multiplicative units of the theory. We show that for the multiplicative deloopings, thelimiting map P : BO �! Z1R

is an in�nite loop map yielding a map of spectra P : Ko!MR from connective K-theoryto the multiplicative spectrum of the theory.The cycle groups admit two natural homomorphisms:
ZqC(P(V ))  � ZqR(P(V )) �! eZqR(P(V )):
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The left mapping is the obvious inclusion. The right mapping is projection to the Galois
quotient eZqR(P(V )) = ZqR(P(V ))=Zqav(P(V )) where Zqav(P(V )) = fc + c : c 2 ZqC(P(V ))g.The colimits of these spaces have E1-ring structures for which the limiting maps

Z1C  � Z1R �! eZ1R
are E1-ring maps. It is known that ��Z1C �= Z[s] where s corresponds to the generator of�2Z1C �= Z and ��Z1R �= Z2[y] where y corresponds to the generator of �1Z1R �= Z2. Underthe isomorphism (1.1) we show that the maps above induce ring homomorphisms

Z[s]  � Z[x; y]=(2y) �! Z2[y]
given by x 7! s2 and y 7! y.Composing with the mapping P gives two new mappings

Z1C �=Qk�0K(Z; 2k)
%

BO P����! Z1R
&
eZ1R �=Qk�0K(Z2; k):

The top composition classi�es the total Chern class of the complexi�cation, and the bottomclassifes the total Stiefel-Whitney class. Thus the characteristic class P carries all thisinformation. Furthermore, the maps above all extend to in�nite loop maps.Surprisingly other natural functors in K-theory, such as the forgetful functor, extendfrom Grassmannians to the spaces of all cycles yielding new proofs of relations betweencharacteristic classes. (See x5.) In x6 these maps are also shown to be in�nite loop maps.There is a unifying perspective on the results discussed above. For this we revisit themap
(1.2) c : BU �! Z1C
and recall that it is a Z2-map with respect to complex conjugation. Thus we plunge intothe world of Z2-spaces, Z2-maps, and Z2-equivariant homotopy theory. Note that a Z2-space is just a Real space in the sense of Atiyah [A]. Furthermore, BU is the classifyingspace for Atiyah's KR-theory. We prove in x6 that Z1C has the structure of a Z2E1-ringspace and that c is a Z2-equivariant in�nite loop map into the multiplicative structure.In his thesis, Pedro dos Santos has proved that there is a canonical Z2-equivarianthomotopy equivalence
(1.3) Z1C �= Y

k�0K(Z;Rn;n)
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whereK(Z;Rn;n) denotes the equivariant Eilenberg-MacLane space classifying Z2-equivariantcohomology indexed at the representation Rn;n = Cn (with action given by complex con-jugation) and with coe�cients in the constant Mackey functor Z. He furthermore showsthat with respect to (1.3) the algebraic join pairing classi�es the equivariant cup prod-uct and the mapping (1.2) classi�es the equivariant total Chern class in KR-theory. Ourcharacteristic mapping P represents the restriction of this equivariant Chern class to the�xed-point sets. (See x6 for details.)Analogous results for the quaternionic case are proved in Part II of this paper.The authors would like thank Pedro Santos and Daniel Dugger for several very usefulremarks and conversations relating to this work. They would also like to mention thatin his thesis, Jacob Mostovoy computed some of the homotopy groups that appear inthis paper. His results were announced in [Mo1] and subsequently appeared in [Mo2].The authors are indebted to the referee for several valuable contributions including animprovement in Proposition 8.2 from \homotopy equivalence" to \homeomorphism" anda proof of Proposition 5.3. The second author would like to thank the hospitality ofOsnabr�uck Universit�at, the University at Stony Brook and Stanford University during theelaboration of portions of this work.

x2. Spaces of complex cycles. For expository purposes we quickly review some knownresults for groups of algebraic cycles over C. The reader is referred to [L2] for an enlargedexposition. Let V be a �nite-dimensional complex vector space. For integers d; q � 0, letCqd(P(V )) denote the Chow variety of e�ective algebraic cycles of codimension q and degreed in the projective space P(V ). The disjoint union Cq(P(V )) =`d Cqd(P(V )) is an abeliantopological monoid whose na��ve group completion is denoted by Zq(P(V )).As usual let K(G;n) denote the Eilenberg-MacLane space with �nK(G;n) �= G and�mK(G;n) �= 0 for m 6= n, and for a graded abelian group G� = �j�0 Gj , let K(G�)denote the weak product K(G�) = Qj�0K(Gj ; j):
Theorem 2.1. ([L1]) For q � dim P(V ) there is a canonical homotopy equivalence
(2.1) Zq(P(V )) �= K(Z; 0)�K(Z; 2)�K(Z; 4)� � � � �K(Z; 2q)
The canonical aspect of this splitting is discussed in Appendix A.
Theorem 2.2. ([LM]) The algebraic join determines a continuous biadditive pairing
(2.2) # : Zq(P(V )) ^ Zq0(P(V 0)) �! Zq+q0(P(V � V 0))
which, with respect to the splitting (2.1), represents the cup product.
Theorem 2.3. ([FM]) Under the join pairing (2.2) the homotopy groups of the limitingspace Z1 form a graded ring isomorphic to a polynomial ring in one variable
(2.3) ��Z1 �= Z[s]
where s 2 �2Z1 is the generator.
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If one considers Z[s] as a graded ring with one generator in degree two, then thequotient Z[s]=(sq+1) has a natural structure of graded abelian group. Using the terminol-ogy established above, Theorems 2.1 and 2.3 can be reformulated by saying that one hascanonical homotopy equivalences Zq(P(V )) �= K � Z[s]=(sq+1) � and Z1 �= K (Z[s]).Furthermore, the latter equivalence induces, under the join pairing, a ring isomorphism��Z1 �= Z[s].Let Gq(P(V )) = Cq1(P(V )) denote the Grassmannian of codimension-q planes in P(V ),and let Zq(P(V ))(1) denote the connected component of Zq(P(V )) consisting of all (notnecessarily e�ective) algebraic cycles of degree 1.
Theorem 2.4. ([LM]) Under the splitting (2.1) the inclusion
(2.4) Gq(P(V )) ,! Zq(P(V ))(1)
represents the total Chern class of the tautological q-plane bundle �qC over Gq(P(V )).Passing to a limit as dim(V )!1 gives a mapping

BUq �! Zq(P1)(1) �= 1 �
qY
i=1K(Z; 2i)

which classi�es the total Chern class of the universal q-plane bundle �qC over BUq. Takingthe limit as q !1 gives a mapping
(2.5) BU �! Z1(1) �= 1 �

1Y
i=1K(Z; 2i) def= K(Z; 2�)

which classi�es the total Chern class map from K-theory to even cohomology.
This natural presentation of the total Chern class map comes equipped with the followingremarkable property.

Theorem 2.5. ([BLLMM]) The join pairing on K(Z; 2�) enhances to an in�nite loopspace structure so that with respect to Bott's in�nite loop structure on BU the map (2.5)is an in�nite loop map.

x3. Spaces of real cycles. A Real structure on a complex vector space V is a C-antilinear map � : V ! V such that �2 = 1: AReal vector space is a pair (V; �) consistingof a complex vector space V and a Real structure �. Any such space is equivalent to (Cn; �0)where �0 is complex conjugation.A Real structure � on V induces an anti-holomorphic Z2-action on the complex projectivespace P(V ) which in turn induces an anti-holomorphic Z2-action on the Chow varietiesCqd(P(V )). This produces an automorphism
(3.1) � : Zq(P(V ))! Zq(P(V )):
of the topological group of all codimension-q cycles on P(V ).
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De�nition 3.1. By the Real algebraic cycles of codimension q on P(V ) we mean thesubgroup ZqR(P(V )) of cycles �xed by the involution �. The closed subgroup of Galoissums Zq(P(V ))av = fc+ �c j c 2 Zq(P(V ))g
is called the group of averaged cycles, and the quotient

eZqR(P(V )) = ZqR(P(V ))=Zq(P(V ))av
is called the group of reduced Real algebraic cycles.
We have adopted the standard de�nition of real algebraic cycles as those which are �xedby the Galois group Gal(C=R). Note that the group of reduced cycles is the topologicalvector space over Z2 freely generated by the irreducible Real subvarieties of P(V ).Fix a Real vector space (V; �) and let x0 = [0 : � � � : 0 : 1] 2 P(V � C). Given anirreducible algebraic subvariety Z � P(V ) we de�ne its algebraic suspension �=Z =x0#Z � P(V � C) to be the union of all projective lines joining Z to x0. Algebraicsuspension extends linearly to a Z2 equivariant continuous homomorphism

(3.2) �= : Zq(P(V ))! Zq(P(V � C)):
The Algebraic Suspension Theorem [L1] states that (3.2) is a homotopy equivalence.When V is a Real vector space, T. K. Lam showed that (3.2) is an equivariant homotopyequivalence. (See [LLM2] for considerable generalizations.) In particular we have thefollowing.

Theorem 3.2. ([Lam]) Algebraic suspension induces homotopy equivalences:
�= : ZqR(P(V )) �=! ZqR(P(V � C)); �= : Zq(P(V ))av �=! Zq(P(V � C))av;

and �= : eZqR(P(V )) �=! eZqR(P(V � C)):
for all q < dim(V ).
This result shows that the homotopy types of the topological groups ZqR(P(V )), Zq(P(V ))avand eZqR(P(V )) depend only on q, and so we can drop the reference to V . Our �rst theoremscompute these homotopy types.

Theorem 3.3. There is a canonical homotopy equivalence
ZqR �=

qY
n=0

nY
k=0K(In;k; n+ k)

where
In;k =

8><
>:

0 ; if k is odd or k > n;
Z ; if k = n and k is even;
Z2 ; if k < n and k is even:
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Theorem 3.4. There is a canonical homotopy equivalence
Zqav �=

qY
n=0

nY
k=0K

�Iavn;k; n+ k�

where Iav0;0 = 2Z and for n+ k > 0

Iavn;k = ~Hk�1(Pn�1R ;Z) =
8><
>:

0 ; if k is odd or k > n;
Z ; if k = n and k � 2 is even;
Z2 ; if k < n and k � 2 is even:

The homomorphism on homotopy groups induced by the inclusion Zqav � ZqR is injective,and with respect to the splittings above, it maps Iavn;k to In;k in the obvious way. (This
explains the 2Z in I0;0.)
Theorem 3.5. ( [Lam]) There is a canonical homotopy equivalence
(3.1) eZqR �= K(Z2; 0)�K(Z2; 1)�K(Z2; 2)� � � � �K(Z2; q):
The proofs of these results are given in x8. Useful diagrams of the graded groups Iav�;� andI�;� are given in x9.

x4. The ring structure. The homotopy groups
(4.1) ��ZqR = M

0�k�n�q In;k
are vastly simpli�ed conceptually if one takes into account their multiplicative struc-ture. The algebraic join pairing (2.2) restricts to a pairing

# : ZqR ^ Zq0R �! Zq+q0R
which gives ��Z1R the structure of a commutative ring. Since the join of an averaged cyclewith a �xed cycle is again an averaged cycle, the subgroup ��Z1av is an ideal in this ring.In x9 we will prove the following result.
Theorem 4.1. There is a ring isomorphism
(4.2) ��Z1R �= Z[x; y]=(2y)
where x corresponds to the generator of �4Z1R �= Z and y corresponds to the generator of�1Z1R �= Z2, and where (2y) denotes the principal ideal generated by 2y in the polynomialring Z[x; y]. Under this isomorphism the ideal ��Z1av � ��Z1R corresponds to the ideal

��Z1av �= (2; x)
generated by 2 and x. Furthermore, with respect to the isomorphisms (4.1) and (4.2), wehave I2m+`;2m is the cyclic subgroup generated by xmy`:
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Corollary 4.2. The algebraic join induces a ring structure on �� eZ1R . There is a canonicalring isomorphism
�� eZ1R �= Z2[y]

where y in the generator of �1 eZ1R = Z2.
Remark 4.3. Consider the polynomial ring Z[x; y] on the variables x and y, of degrees4 and 1, respectively. Given a non-negative integer q, de�ne the ideal

Jq = ( 2y; fxmyj : 2m+ j = q + 1 g) � Z[x; y];
and denote J1 = (2y). Each quotient ring Rq� = Z[x; y]=Jq, q = 0; : : : ;1, has the naturalstructure of a graded abelian group.Using this notation, Theorem 3.3 can be rephrased by saying that there is a canonicalequivalence ZqR �= K(Rq�):
Under this equivalence the direct summand I2q+j;2q of the (4q + j)-th homotopy group of
ZqR is precisely the subgroup of Rq� generated by xqyj . One can rephrase Theorem 3.4 andCorollary 3.5 in a similar fashion.We also prove that there are canonical equivalences

Z1R �= K ( R1� ) ; eZ1R �= K ( Z2[y] ) and Z1av �= K( Iav ):
Here Iav is the ideal Iav = (2; x) � R1� . Furthermore, these homotopy equivalences inducethe ring isomorphisms presented in Theorems 4.1 and Corollary 4.2.

x5. Extending functors from K-theory. We shall now show that certain basic functorsin classical representation theory carry over to algebraic cycles. This remarkable facttogether with [LM] and the results of x3 leads to a new proof of the basic relationshipsamong characteristic classes.Before beginning we set some notation. For all k � 0 let
�2k 2 H2k(K(Z; 2k); Z) �= Z and e�k 2 Hk(K(Z2; k); Z2) �= Z2

denote the fundamental classes (i.e., the canonical generators). Let ck, wk, and pk denoterespectively the kth Chern, Stiefel-Whitney, and Pontrjagin classes.
Complexi�cation. Consider a Real vector space (V; �) and the map (V; �) ! V whichforgets the Real structure. Associated to this is the homomorphism ZqR(P(V )) ,! ZqC(P(V ))which simply includes the subgroup �xed by � into the group of all cycles. Restricting tolinear cycles gives a commutative diagram

(5.1)
GqR(P(V )) ����! GqC(P(V ))

P??y ??yc
ZqR(P(V )) ����! ZqC(P(V ))
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where GqR(P(V )) = f` 2 GqC(P(V )) : �(`) = `g
is the Grassmannian of real subspaces of codimension-q in VR = fv 2 V : �(v) = vg:Recall from 2.4 that under the canonical identi�cation ZqC(P(V )) �= Qqk=0K(Z; 2k)the map c in (5.1) classi�es the total Chern class of the tautological q-plane bundle�qC �! GqC(P(V )), i.e.,

c�(�2k) = ck(�qC) for k = 0; :::; q:
Consider the composition

(5.2) w = � � P : GqR(P(V )) �! eZqR(P(V ))
where � : ZqR(P(V )) ! eZqR(P(V )) = ZqR(P(V ))=Zq(P(V ))av is the projection. It is a
result of Lam [Lam] that under the canonical identi�cation eZqR(P(V )) �= Qqk=0K(Z2; k);the map w classi�es the total Stiefel-Whitney class of the tautological real q-plane bundle�qR �! GqR(P(V )), i.e.,

w�(e�k) = wk(�qR) for k = 0; :::; q:
We now set V = Cn and take the colimit of the spaces in (5.1) and (5.2) as n ! 1.This gives a diagram

(5.3)

BOq 
����! BUq
P??y ??yc
ZqR �����! ZqC
�??y
eZqR

where ZqC � limn!1ZqC(P(Cn)), etc.. By using (3.3), this can be canonically rewritten as

(5.4)

BOq 
����! BUq
P??y ??yc

[q=2]Y
n=0

q�2nY
i=1 K(Z2; 4n+ i)�

[q=2]Y
k=0K(Z; 4k) �����!

qY
k=0K(Z; 2k)

�??y
qY

k=0K(Z2; k)
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The map 
 on classifying spaces is the one induced by the inclusion Oq � Uq associatedto the complexi�cation of vector spaces VR 7! VR 
 C.Consider the classes
j2k def= ���2k 2 H2k(ZqR; Z) and ejk def= ��e�k 2 Hk(ZqR; Z2):

From these theorems and the commutativity of the diagrams above we see that
(5.5) (�1)kP �j4k = pk(�qR) and P �ejk = wk(�qR):
In particular, j4k is not divisible and not torsion, whereas j4k+2 has order 2. From thefactoring (5.10), (5.11) below we see that j4k = �4k + � where 2� = 0.

The forgetful functor. For a complex vector space V one constructs the conjugate spaceV by taking the same additive group and de�ning a new scalar multiplication � by t�v � tv.With this we can associate to V a Real space ([V ]R; �) where
[V ]R = V � V and �(v; w) = (w; v):

For any q < dim(V ) we have a map
� : ZqC(P(V )) �! Z2qR (P(V � V ))

de�ned by
�(c) = c#c

where # is the complex join. This construction gives commutative diagrams

GqC(P(V )) �����! G2qR (P([V ]R))
c??y ??yP

ZqC(P(V )) �����! Z2qR (P([V ]R))
which stabilize as above to commutative diagrams

BUq �����! BO2q
c??y ??yP
ZqC �����! Z2qR :

Note that � is the map induced by the standard inclusion Uq � O2q.
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Relations. Consider the diagram

(5.6)
BUq ����! BO2q ����! BU2q
c??y P??y ??yc

Qqj=0K(Z; 2j) �����! Z2qR �����! Q2qj=0K(Z; 2j)
Note that if V has a real structure �, then under the isomorphism I�� : V �V �! V �V ,
the map � : ZqC �! Z2qR becomes �(c) = c#��(c). It follows that

� � �(c) = c#��(c)
for c 2 ZqC. We conclude the following.
Proposition 5.1. The composition � � � satis�es

(5.7)
(� � �)��2k = X

i+j=k(�1)
j�2i [ �2j

=
� 2Pm�1j=0 (�1)j�2j [ �2(2m�j) + (�1)m�22m if k = 2m
0 if k = 2m+ 1

for all k.
Proof. By Theorem 2.2 the join mapping # : ZqC � ZqC �! Z2qC has the characterizingproperty that #��2k = Pi+j=k �2i 
 �2j : It is straightforward to verify that the map
� : ZqC ! ZqC, induced by the real structure �, has the characterizing property that
���2k = (�1)k�2k: Taking the composition ZqC ��! ZqC � ZqC 1����! ZqC � ZqC #�! ZqC andpulling back �2k gives the result. �
Similarly we have the diagram

(5.8)
BOq 
����! BUq �����! BO2q??y ??y ??y
ZqR �����! Qqj=0K(Z; 2j) �����! Z2qR

and the relation � � �(c) = c#��c = c#c;
i.e., � � � is just the squaring map. Thus � � � induces a map

g� � � : eZqR �! eZ2qR
which is also the squaring map.
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Proposition 5.2. Under the canonical equivalence 3.5, the composition � � � satis�es

(5.9) ( g� � �)�e�k = X
i+j=ke�i [ e�j =

� e�2m if k = 2m
0 if k = 2m+ 1

for all k.
Proof. Using the fact that the join # : eZqR� eZqR �! eZ2qR classi�es the cup product [Lam],one proceeds as in the proof of 5.1. �
Note that the composition BOq ! eZqR ! eZ2qR classi�es the square of the total Stiefel-

Whitney class w(�qR)2 =Pqk=0 wk(�qR)2.
Notice that as q increases the diagrams (5.8) are included in one another. From [L1] and[Lam] we know that if we de�ne Zq�1C � ZqC via the inclusion V � f0g � V � C, then

ZqC=Zq�1C �= K(Z; 2q) and eZqR= eZq�1R �= K(Z2; q):
From this we obtain a diagram

(5.10)

BOq=BOq�1 ����! BUq=BUq�1??y ??y
ZqR=Zq�1R �0����! K(Z; 2q)
�0??y

K(Z2; q):
and from Theorem 3.3 we know that

(5.11)
Z2q0R =Z2q0�1R = K(Z; 4q0)�

q0�1Y
i=0 K(Z2; 2q0 + 2i) and

Z2q0+1R =Z2q0R =
q0Y
i=0K(Z2; 2q0 + 2i+ 1):

By Theorem 3.4 the map �0 kills all factors with i > 0. However, �0 could representnon-trivial cohomology operations on K(Z2; 2�).
At this point one might naturally ask: What is the cohomology class ��0(�2q)? Thefollowing answer, which was provided by the referee, will be proved at the end of x8.
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Proposition 5.3. The class ��0(�2q) is is given by

��0(�2q) =
� �2q 
 1
 1 � � � 
 1 when q is even
1
 � � � 
 1
 �(e�2q�1) when q is odd

where � is the Boskstein operator.
Consider now the composition P given by

BOq Q�! BOq=BOq�1 P0�! ZqR=Zq�1R
where Q is the quotient and P0 comes from (5.10). The image of Q� in H�(BOq; Z2) �=Z2[w1; : : : ; wq] is the ideal (wq) generated by the qth Stiefel-Whitney class wq. Con-
sider the canonical product structure (5.11) and let K(Z2;xiyq�2i) denote the Eilenberg-MacLane space K(Z2; q + 2i) corresponding to the monomial xiyq�2i under the identi�-cation ZR �= K (Z[x; y]=(2y)) : With this notation, let e�q;2i denote the fundamental classin Hq+2i(K(Z2; xiyq�2i) ; Z2) pulled back to the product. Note that ~�q;2i is the Kroneckerdual to the class �q;2i introduced in (9.11). Then we see that
(5.12) P �e�q;2i = Fq;2i(w1; : : : ; wq�1) � wq
where Fq;2i(�1; : : : ; �q�1) 2 Z2[�1; : : : ; �q�1] is a homogeneous polynomial of weighted de-
gree 2i, i.e., Fq;2i(t�1; t2�2; : : : ; tq�1�q�1) = t2iFq;2i(�). These polynomials determine P upto homotopy.

x6. Equivariant in�nite loop space structures and KR-theory. In this section weshall show that our spaces of complex algebraic cycles have the structure of an equivariantE1-ring spaces (cf. [LMS]), under the Z2 action induced by complex conjugation. Theprinciple is the same as in [LLM1], where the ruled join of cycles induces the in�nite loopstructure. However, here we obtain RO(Z2)-graded cohomology theories, as opposed toR(Z2)-graded ones.
Furthermore, we show that one obtains two canonical equivariant in�nite loop spacesfrom these constructions. The �rst one comes from delooping the additive structure,which yields an equivariant ring spectrum. The second one come from delooping themultiplicative units of the original ring space. This yields an equivariant spectrum whichis directly related to characteristic classes in Atiyah's KR-theory.
It follows from these constructions that the space of real cycles Z1R is also an E1-ringspace and that most of the maps introduced in previous sections are maps of E1-ringspaces. Our arguments involve P. May's use of equivariant I�-functors and make extensiveuse of the constructions in [LLM1]. We shall brie
y introduce the concepts but refer thereader to [LLM1] for many details.
Consider C1 as a direct sum R1� iR1 with its standard orthogonal inner product, andwhere Z2 acts by complex conjugation. Then C1 contains in�nitely many copies of each
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irreducible real representation of Z2, in other words, in the terminology of [LMS] it is acomplete Z2-universe. It will be �xed throughout this discussion.
In general, suppose G is a �nite group and let U be a �xed G-universe. Recall that anequivariant in�nite loop space X, indexed on U , is a based G-space for which there is col-lection of G-spaces fX(V ) j V � U is a G-submoduleg together with G-equivariant home-omorphisms X �= 
VX(V ). Here 
VX(V ) denotes the space of based maps F (SV ; X(V ))from the one-point compacti�cation SV of V to X(V ), and 
VX(V ) is equipped with itsnatural structure of G-space. The structural homeomorphisms are coherent in the sensethat, if for a given submodule W � V one denotes by V � W the orthogonal comple-ment of W in V , then there are compatible G-homeomorphisms X(W ) �= 
V�WX(V ): Ingeneral, to give a G-space X 0 an equivariant in�nite loop space structure is to provide aG-homotopy equivalence between X 0 and an equivariant in�nite loop space X.

Remark 6.1. If fX(V ) j V � Ug is the collection of equivariant \deloopings" of theequivariant in�nite loop spaceX, letX(n) denoteX(Rn) for the trivialG-module Rn. Thenfor any subgroup H � G, the �xed point set XH has the structure of a (non-equivariant)in�nite loop space, since the G-homeomorphism X �= 
nX(n) gives a homeomorphism
of �xed point sets XH �= (
nX(n))H = 
n �X(n)H� : Furthermore, if H � K � G are
subgroups then, under the structure de�ned above, the inclusion XK � XH is obviouslya map of (non-equivariant) in�nite loop spaces.
In order to show that a G-space X has the structure of an equivariant in�nite loopspace, we use the machinery developed in [CW]. In this formulation, one considers thecategory of GL(U)-spaces, whose objects are G-spaces on which there is an action of theequivariant linear isometries operad GL(U) (cf. [M3, pp 10 �], [CW]), and where a mapof GL(U)-spaces is a G-map which commutes with the action of GL(U). The next resultis a formulation of the main results from [CW], suitable for our purposes.

Theorem 6.2. ([CW]) Let U be a complete G-universe and let X be a GL(U)-spacewhich is G-group-complete. In other words, for each subgroup K � G the induced H-spacestructure makes �0(XK) a group. Then X has an equivariant in�nite loop space structure.This structure is natural in the sense that any map of G-group-complete GL(U)-spacesinduces an equivariant in�nite loop map.
From now on, we restrict ourselves to the case where G = Z2 and �x the Z2 universeU = C1 described above. For simplicity we shatll write L instead of Z2L(U), and we shallavoid mentioning the universe in most instances.
Following Atiyah's terminology [A], de�ne a Real topological space to be a pair(X; �) where X is a space and � : X ! X is an involution. In other words, X is a Z2-space. A Real mapping f : X ! Y between Real spaces is one which commutes withthe involutions (a Z2-equivariant map). We denote by Z2T the category of compactlygenerated, based Hausdor� Real topological spaces, with base-point �xed by the action.The morphism spaces in Z2T are given the usual topology in the compactly generatedcategory, and have the natural Z2-action on them.
A natural way of constructing actions of the equivariant linear isometries operad L uses
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the following notions. Let Z2I� the subcategory of the category of �nite dimensional her-mitian Z2-modules and Z2-module morphisms, whose morphisms are also linear isometries.
De�nition 6.3. A Z2I�-space (or Z2I�-functor) (T; !) is a continuous covariant functorT : Z2I� �! Z2T together with a (coherently) commutative, associative and continuousnatural transformation ! : T � T �! T � � such that

(1) If x 2 TV and if 1 2 Tf0g is the basepoint, then
!(x; 1) = x 2 T (V � f0g) = TV;

(2) If V = V 0 � V 00, then the map TV 0 �! TV given by x 7! !(x; 1) is a homeomor-phism onto a closed subset;(3) Each sum map ! : T (V )� T (W )! T (V �W ) is a G-map;(4) Each evaluation map e : Z2I�(V;W )� T (V )! T (W ) is a G-map.
The following result is a direct consequence of the techniques in [M3]. See the discussionin [LLM1, x2].

Theorem 6.4. If (T; !) is an Z2I�-space, then
T (C1) = limV�C1 T (V );

where the limit is taken over �nite-dimensional Z2-submodules of C1, is an L-space. Anymap � : (T; !) �! (T 0; !0) of I�-spaces, induces a mapping � : T (C1) �! T 0(C1) ofL-spaces.
A given V 2 Z2I� can be written as V = Rn � � 
 Rm, where Rk denotes a trivialrepresentation of rank k and � is the sign representation of Z2. In particular, if onedenotes by VR the underlying real vector space of V , then the sum V ��
V is canonically

isomorphic to VC def= VR 
 C as a Z2-module, where the action on the latter is given bycomplex conjugation. Given such V , we denote its real dimension by v = n +m, and forany map f : V ! W we denote by fC its natural extension to the complexi�ed vectorspaces.
Example 6.5. (The Grassmann functor) Given V 2 Z2I� of dimension v, letTG(V ) = Gv(VC�VC) = Gv(P(VC�VC)) be the Grassmannian of codimension-v complexplanes in VC�VC, with distinguished point 1G = VC�f0g. To a linear isometric embeddingf : V ! W we de�ne TGf : TGV ! TGW on a plane P � VC � VC by TGf(P ) =((fCVC)? � f0g)� (fC � fC)(P ). The natural transformation !G : TG � TG �! TG � � isgiven by the direct sum, i.e., for P 2 TGV and P 0 2 TGV 0, we de�ne !G(P; P 0) = ��(P�P 0)where � : V � V � V 0 � V 0 �! V � V 0 � V � V 0 is the isometry interchanging the middlefactors. This is an Z2I�-functor, and

TG(C1) = BU
is then a Z2-equivariant L-space, and hence it is an equivariant in�nite loop space; cf.Theorem 6.2. According to Remark 6.1, if f0g denotes the trivial subgroup of Z2, then
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both �xed point sets BU = BUf0g and B0 = BUZ2 inherit in�nite loop space structureswhich makes the canonical \complexi�cation" inclusion BO ,! BU a map of in�nite loopspaces. These are the standard Bott in�nite loop space structures. (See [M3, pg.16].)
This equivariant structure on BU classi�es an RO(Z2)-graded equivariant cohomologytheory which we now recall.

De�nition 6.6. Let (X; �) be a Real space. A Real vector bundle over (X; �) is a Realspace (E; �E) where � : E ! X is a complex vector bundle, �E is a complex anti-linearbundle map, and � is a Real map, i.e., ��E = ��.
A Real projective variety with its complex conjugation involution gives a Real space.Important examples are the Grassmannians Gq(Cn) and the Chow varieties. The universalq-plane bundle �q over Gq(Cn) is a Real bundle.

Proposition 6.7. Let (X; �) be a Real space which is compact and Hausdor�. Then theassociation f 7! f��q gives an equivalence of functors:
[X;Gq(C1)]R �=�! VectqR(X);

from homotopy classes of Real mappings X ! Gq(C1) to the set VectqR(X) of equivalenceclasses of Real q-dimensional vector bundles over X.
Proof. One can carry through the standard proof (cf. [MS]). The only point to establishis that a Real bundle is locally trivial in the category of Real bundles. This is shown forexample in [A]. �
It follows that the limiting Real space G1 �= G1(C1 � C1) = BU classi�es Atiyah'sKR-theory ([A]), and hence this equivariant in�nite loop space structure on BU givesan equivariant spectrum KR whose associated RO(Z2)-graded cohomology theory is anenhancement of KR-theory.
In what follows, we show how to construct another Z2I�-functor using constructionswith algebraic cycles. The resulting equivariant in�nite loop space will then be used toprovide characteristic classes for the RO(Z2)-graded KR-theory.

Example 6.8. (The algebraic cycle functor) Consider the functor de�ned by settingTZ(V ) = Zv(P(VC � VC)), the topological group of codimension-v cycles in P(VC � VC),with 1Z = 1G. To a morphism f : V !W we associate
TZ(f)c = P(fC(VC)? � f0g)# (fC � fC)�(c);

and we de�ne !Z by
!Z(c; c0) = ��(c#c0):

Using the same arguments as in [LLM1], it can be shown that (TZ ; !Z) is a Z2I�- functorwith the Z2-action given by conjugation, and hence
TZ(C1) = Z1C
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is an equivariant L-space. In fact it is an equivariant E1-ring space which is additivelyZ2-group complete and therefore it is equivalent to the 0th space of an equivariant E1-ringspectrum, which we denote by ZC.The join operation !Z has various properties which yield important results:
(1) The join is multiplicative with respect to degree of cycles, in other words

deg!Z(c; c0) = deg c � deg c0;
(2) If c is an averaged cycle then, for any �xed cycle c0, the join !Z(c; c0) is also anaveraged cycle. In other words, the averaged cycles form an \ideal" within the �xedcycles.
Now, let Z1C (1) � Z1C be the subspace consisting of the cycles of degree one. Since thejoin operation !Z is equivariant and multiplicative on degrees, one concludes that:

a. Z1C (1) is also an equivariant Z2-group-complete L-space, since it is connected andits �xed point set is connected. It then follows that Z1C (1) carries a structure of an
equivariant in�nite loop space of its own, and hence it is equivalent to the 0th space ofanother equivariant spectrum, which we denote by MR to emphasize the fact that we areequivariant delooping the multiplicative units of Z1C .b. Given V 2 Z2I�, the \forgetful map"

�V : ZvC(P(VC � VC)) �! Z2vR (P(VC � �VC � VC � �VC));
which sends c to !Z(c�c), is not a group homomorphism. Nevertheless, the preservation ofdegrees by the join implies that the maps �V de�ne a map of (non-equivariant) I�-functorsbetween Z�C and Z�R, which preserves cycles of degree 1. In particular, they induce a mapof L-spaces � : Z1C (1)! Z1R (1):
All of this discussion, in fact all the discussion in sections 4, 5, and 6 of [BLLMM] andsection 3 of [LLM1], which include material on Chow monoid functors, carries over directlyto our spaces of algebraic cycles.

Theorem 6.9.
(1) The limiting topological group Z1C is an equivariant E1-ring space which formsthe 0-level space of an equivariant E1-ring spectrum ZC. The �xed point set Z1Ris a (non-equivariant) E1-ring space which forms the 0-level space of an E1-ringspectrum ZR. The inclusion � : Z1R ,! Z1C extends to a map of (non-equivariant)ring spectra � : ZR ! ZC.
(2) The quotient group ~Z1R def= Z1R =(Z1C )av is also an E1-ring space, and the quotient

map � : Z1R ! ~Z1R is a map of E1-ring spaces. Hence, ~Z1R is the 0th space of
an E1-ring spectrum ~ZR, and there is a natural map of spectra � : ZR ! ~ZR:Similarly, ~Z1R (1) is an in�nite loop space under the operation induced by the join,
which makes it into the 0th space of an spectrum ~MR:(3) Z1C (1) carries an in�nite loop space structure which enhances the algebraic join,and makes it into the 0-level space of an equivariant spectrum ZC. The �xed pointset Z1R is a (non-equivariant) E1-ring space which forms the 0-level space of a
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spectrum MR. The inclusion � : Z1R (1) ,! Z1C (1) extends to a map of (non-equivariant) spectra MR !MC.(4) The canonical \forgetful map" � : Z1C (1) ! Z1R (1) induces a map of (non-equivariant) spectra � :MC !MR:
An important feature of Z1C (1) comes from the fact that the inclusion

Gv(P(VC � VC)) � Zv(P(VC � VC))(1);
as e�ective cycles of degree 1, is a natural transformation of Z2I�-functors, and the resultingmap BU! Z1C (1)
is an equivariant in�nite loop space map. This fact, together with the discussion aboveand [BLLMM], gives the following result.
Theorem 6.10.

(1) The canonical equivariant inclusion BU! Z1C (1) extends to a morphism
ec : KR!MC

of Z2-equivariant spectra. Passing to �xed point sets gives maps of (non-equivariant)spectra P : Ko!MR from connective KO-theory to MR, and c : Ku!MC fromconnective K-theory toMC. These maps �t into a commutative diagram of spectra
Ko 
����! Ku
ec
??y ??yc
MR ����!� MC

which extends the commutative diagram
BO 
����! BU
P??y ??yc
Z1R ����!� Z1C ;

where the map c : BU ! Z1C classi�es the total Chern class. The compositionKo ! MR ! ~MR is an extension to spectra level of the classifying map BO !
Z1R (1)! ~Z1R (1) for the total Stiefel-Whitney class.

Analogous results for the groups of quaternionic cycles will be established in the com-panion paper [LLM3].
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A natural question now arises: What is the equivariant cohomology theory classi�ed bythe Z2-spectrum ZC? In his thesis Pedro dos Santos has established the following beautifulresults. To state them we brie
y recall some concepts from equivariant homotopy theory(cf. [M4].)Let G be a �nite group andM a Mackey functor for G. To each real representation V ofG there is an Eilenberg-MacLane space K(M;V ) which classi�es the ordinary equivariantcohomology group HVG (�;M) in dimension V with coe�cients in the Mackey functor M .These �t together to give an equivariant spectrum K(M; 0) which classi�es the full ROG-graded equivariant cohomology with coe�cients in M .We now specialize to the group G = Z2 and M = Z, the Mackey functor constant at Z.For each n we consider the fundamental respresentation Rn;n = Cn of Z2 given by complexconjugation.
Theorem 6.11. ( dos Santos [dS]) There is a canonical Z2-equivariant homotopy equiv-alence
(6.1) Z1C �=

1Y
n=0K(Z;Rn;n):

This extends to an equivalence of Z2-equivariant ring spectra
ZC �= K(Z; 0)�K(Z;R1;1)�K(Z;R2;2)� : : :

where K(Z; 0) is the equivariant Eilenberg- MacLane spectrum and K(Z;Rn;n) is the con-
nective equivariant spectrum with 
Rn;nK(Z;Rn;n) �= K(Z; 0), and where the ring structureis given by the equivariant cup product pairing.
For a Z2-space X we denote by H�Z2(X;Z) the full ROZ2-graded equivariant cohomol-

ogy ring of X with coe�cients in the Mackey functor Z. We abbreviate HRn;nZ2 (X;Z) �
Hn;nZ2 (X;Z)
Theorem 6.12. (Dugger and dos Santos ) There is a canonical ring homomorphism

H�Z2(BU;Z) �= R[ec1;ec2;ec3; : : : ]
where ecn 2 Hn;nZ2 (BU;Z)
for each n and R = H�Z2(pt;Z) is the coe�cient ring.
Furthermore, let e�n;n denote the fundamental class of K(Z;Rn;n). Then with respect tothe splitting (6.1) the natural Z2-map

P : BU �! Z1C
satis�es P � (e�n;n) = ecn
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Note . The �rst assertion of Theorem 6.12 is due to Dan Dugger [D] and the second todos Santos [dS].
Theorem 6.12 shows that the inclusion map ec : BU ! Z1C (1) naturally classi�es thetotal Chern class in (full ROZ2-graded) equivariant cohomology. Thus for Real spaces X,ec determines a natural transformation

ec : KR(X) �! M
n�0H

n;nZ2 (X; Z)
and the property that ec(V � V 0) = ec(V )#ec(V 0), together with Theorem 6.12, shows that

ec(E � E0) = ec(E) [ ec(E0)
for all E;E0 2 KR(X). Theorem 6.10 shows that the equivariant in�nite loop structureon Z1C (1) corresponding to the spectrum MC makes this total Chern class map ec anequivariant in�nite loop map. This is the full Z2-equivariant version of Segal's conjecturesettled in [BLLMM].In fact under the forgetful functor the class ec becomes the ordinary total Chern classc, and the map ec : KR !MC of equivariant spectra becomes the map c : Ku !MC ofnon-equivariant spectra studied in [BLLMM].More interesting perhaps is the restriction of ec to the �xed-point set BO � BU. Thisgives a characteristic class for real bundles which is a mixture of Z and Z2 classes andsatis�es Whitney duality. We examine this next.

x7. A new total characteristic class. The mappings
P : GqR(P(V )) �! ZqR(P(V ))

which stabilize to
P : BOq �! ZqR and P : BO �! Z1R

represent a \total" characteristic class which is in complete analogy with the total Chernclass: c : GqC(P(V )) �! ZqC(P(V ))
c : BUq �! ZqR and c : BU �! Z1R

and the total Stiefel-Whitney class:
w : GqR(P(V )) �! eZqR(P(V ))

w : BOq �! eZqR and w : BO �! eZ1R :
This new class has the property that for real vector bundles E and F over a space X,
(7.1) P (E � F ) = P (E) [ P (F ):
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As a map from BO to Z1R it is an in�nite loop map. It �ts into a pattern of in�nite loopdiagrams as we saw in x6. This compelling picture makes the further study of P intriguing.
Recall that we have a commutative diagram:

Z1C
%

BO P����! Z1R
&
eZ1R

where the upper map represents the total Chern class of the complexi�cation (essentiallythe total Pontrjagin class) and the lower map is the total Steifel-Whitney class. However,P contains much more information. From the splitting in Theorem 3.3 the map P is seen torepresent a certain sum of integral and mod 2 cohomology classes. Thus P is a particulararrangement of Pontryagin and Stiefel-Whitney classes. Exactly which arrangement hasbeen determined by dos Santos.
Theorem 7.1. ([dS]) For k < n, one has

P �(�n;k) = Sqkwn
where Sqk denotes the kth Steenrod operation and wn denotes the nth Stiefel-Whitneyclass.When k = n and n is even, P �(�n;n) is the nth Pontrjagin class pn.There is a second construction that one can associate to Real bundles.
Construction 7.2 To a Real map f : X ! Gq(P(Cn)) classifying a Real bundle Ef ! X,we associate the mapping ef : X=Z2 �! Zq(P(CN ))av
de�ned by ef([x]) = f(x)+ f(�x) = f(x)+ �f(x). Let �n;k denote the fundamental class ofthe factor K(In;k; n+ k) in the canonical splitting of ZqR given in Theorem 3.3. Then

ef�(�n;k) 2 H�(X=Z2)
is an invariant of the Real bundle Ef .
Example 7.3. Consider the commutative diagram of Real spaces

Pn ����! Gn(P(CN ))??y ??y
Z0(Pn) ����! Zn(P(CN ))
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where the left vertical map is the standard inclusion, the horizontal maps are complexsuspension, and the right vertical map is our Z2- characteristic map. Let Pn;k � Pnbe the Real spaces which are introduced in the proof of Theorem 9.1. Composing with
suspension gives a Real mapping Pn;k �! Gn(P(CN )); for which 7.1 yields a map ef :Pn;k=Z2 �! Zq(P(CN ))av: It follows from the discussion (9.11) �. that the corresponding
classes ef�(�n;k) are non-trivial for 0 < k � n.
Note 7.4. Let eP (E) denote the total class of a Real bundle E constructed in 7.2. Thenwe have eP (E � E0) = gP (E)#P (E0)
This class satis�es the addition relation:

eP (E � E0) + eP (E � E0) = eP (E)# eP (E0)

x8. Proof of Theorems 3.3 and 3.4
Consider the Real vector space (Cn+1; �) where � is complex conjugation, and denotethe corresponding projective space by PnC and its real form (the � -�xed-point set) by PnR.Our �rst step reduces everything to the case of 0-cycles.

Proposition 8.1. Fix integers q � N . Then
a. Iterations of the algebraic suspension give canonical homotopy equivalences:

ZqR(PNC ) �= ZqR(PqC) = Z0;R(PqC);
Zq(PNC )av �= Zq(PqC)av = Z0(PqC)av;eZqR(PNC ) �= eZqR(PqC) = eZ0;R(PqC):

b. The short exact sequence of topological abelian groups:
0! Zq(PqC)av ! ZqR(PqC) p�! eZqR(PqC)! 0:

is a principal �bration.

Proof. Part a follows from repeated applications of Theorem 3.2. To prove part b, con-
sider the monoid C def= qd�0 SPd(PqC)fix and its closed submonoid C 0 def= qd0�0 SP2d0(PqC)av.Note that the na��ve group completions of C and C 0 are ZqR(PqC) and Zq(PqC)av, respectively.Since complex conjugation induces a real analytic map on all products SPd(PqC)�SPd0(PqC),preserving �ltrations by degrees, one can provide equivariant triangulations to all suchproducts, making (C;C 0) into a triangulated pair. It follows that (C;C 0) satis�es thehypothesis of [Li2, Theorem 5.2], which then implies the desired result. �
The next result makes thorough use of the identi�cation of PnC with the n-fold symmetricproduct SPn(P1C) of P1C, and the fact that the complex conjugation involution on PnC isinduced by the complex conjugation � on P1C under this identi�cation. We are grateful tothe referee for a very nice technical improvement of our original version of this Propositionwhich was based on a construction in [FL].For any compact space Y let Z0(Y )o denote the connected component of 0 in Z0(Y ).
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Proposition 8.2. There exist canonical equivariant homeomorphisms

(8.1) Zq(PqC) �=
qY

n=0fZ0(P
nC)=Z0(Pn�1C )g �= Z� qY

n=1Z0(S
2n)o

where
(8.2) S2n = Cn [ f1g = PnC=Pn�1C
with Z2-action given by complex conjugation.
Proof. Choose a basepoint 1 2 P1C which is �xed under the complex conjugation � , i.e.a real point. Then, for each n � q, the canonical inclusion

(8.3) PnC = SPn(P1C) �! PqC = SP q(P1C)
� 7�! � + (q � n) � 1

is Z2-equivariant and induces an injective equivariant homomorphism
(8.4) Z0(PnC)! Z0(PqC):
We now de�ne a continuous equivariant homomorphism �q : Z0(PqC) ! Z0(Pq�1C ) bysetting

(8.5) �q(x1 + � � �+ xq) = X
I�6=f1;:::;qg

(�1)q�1�jIj(xI + (q � 1� jIj) � 1)

for points x1 + � � � + xq 2 SP q(P1C) = PqC and extending linearly. Here xI � xi1 + xi2 +� � �+ xik with k = jIj, and as always we take xI + (q � 1� jIj) � 1 2 SP q�1(P1C) = Pq�1CIt is straightforward to verify that this mapping is a continuous retraction onto thesubgroup given in (8.4) with n = q � 1. Thus we obtain an equivariant direct productdecomposition of topological abelian groups
Z0(PqC) = Z0(Pq�1C )� (Z0(PqC)=Z0(Pq�1C ))

which under iteration yields a canonical equivariant direct product decomposition

Z0(PqC) =
qY

n=oZ0(P
nC)=Z0(Pn�1C ):

Now note that Z0(P0C) = Z and Z0(PnC)=Z0(Pn�1C ) = Z0(PnC=Pn�1C )o for n > 0. �
Applying the averaging, �xed-point and quotient functors gives similar (non-equivariant)splittings for our real cycle spaces.
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Corollary 8.3. There exist canonical direct product decompositions of topologicalabelian groups:
(8.6) Z0(PqC)av �= 2Z� qY

n=1 Z0(S
2n)avo ; Z0;R(PqC) �= Z� qY

n=1 Z0(S
2n)fixo

where projection onto the �rst factor is the degree. These splittings are compatible, andthe �bration in 8.1(b) splits as a product p =Qn pn of principal �brations:
(8.7) 0 �! Z0(S2n)avo �! Z0(S2n)fixo pn�! Z0(Sn)o 
 Z2 �! 0
for n > 0 and the projection p0 : Z ! Z2. In particular we obtain a canonical directproduct decomposition
(8.8) eZ0;R(PqC) �=

qY
n=0Z0(S

n)o 
 Z2 �
qY

n=0K(Z2; n):
Proof. The �rst assertion and the compatibility of the splittings follow straightforwardlyfrom 8.2. Notice that one has canonical topological isomorphisms

Z0(S2n)fixo =Z0(S2n)avo �= Z0(fS2ngfix)o 
 Z2 �= Z0(Sn)o 
 Z2
for n � 1 and that Z0(Sn)o 
 Z2 = K(Z2; n) by the Dold-Thom Theorem [DT]. Thisestablishes (8.8). The fact that the maps pn are principal �brations follows from [Li2,Theorem 5.2] as in the proof of 8.1. �
The next technical result is clearly needed for our subsequent computations.

Lemma 8.4. For any compact space X with a Z2-action there is a natural degree-preserving topological isomorphism: Z0(X)av �= Z0(X=Z2), and therefore by the Dold-Thom Theorem �kZ0(X)av = Hk(X=Z2; Z) for all k:
Proof. Consider the topological homomorphism  : Z0(X)! Z0(X)av � Z0(X) de�nedby  (�) = �+ � ��, where � �� denotes the action of the generator of Z2 on �. Since X iscompact, it follows from the description of the topology of Z0(X) that  is a closed map,which clearly surjects onto Z0(X)av. The composition X ! Z0(X) ! Z0(X)av clearlyfactors through the projection � : X ! X=Z2 , and hence the universal property of thefunctor Z0(�) gives a continuous homomorphism 	 : Z0(X=Z2) ! Z0(X)av such that	 � �� =  , where �� : Z0(X)! Z0(X=Z2) is the projection induced by �. It is a routineveri�cation to see that 	 is injective, and hence a closed continuous bijection. �
Proposition 8.5. For each n > 0 there exists a canonical cross-section of the principal�bration (8.7). Therefore there exist canonical splittings:

Z0(S2n)fixo �= Z0(S2n)avo � eZ0;R(S2n)
for n > 0, and so also a canonical splitting:
(8.9) Z0;R(PqC)o �= Z0(PqC)avo � eZ0;R(PqC)
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Proof. We want to produce a canonical homotopy section for the �bration Z0(S2n)avo !Z0(S2n)fixo ! Z0(Sn)o 
 Z2 where S2n is the one-point compacti�cation of Cn and Sn �S2n is the sphere of real points. De�ne
� : Sn ! Z0(S2n)fixo

by �(x) = x� x1, where x1 is the base point, and let �� be its extension to Z0(Sn) Thenthere is a commutative diagram

(8.10)
Z0(Sn)o ������! Z0(S2n)fixo
Q??y ??yP

Z0(Sn)o 
 Z2 Z0(S2n)fixo =Z0(S2n)avo ;
where Q and P denote the quotient maps.Let f2 : Sn ! Sn be the map of degree 2, �xed in Appendix A, xA.1. It follows fromstandard properties of H-spaces that �� f2 is homotopic to 2�, and it is clear that the map2� factors through the averaged cycles Z0(S2n)avo . On the other hand, it is easy to see thatone has homeomorphisms

fPnC=Pn�1C g=Z2 �= S2n=Z2 �= Sn#Pn�1R ;
where # denotes the real join of topological spaces. Combining this fact with Lemma
8.4, one obtains that Z0(S2n)avo = Z0(PnC=Pn�1C )avo �= Z0(fPnC=Pn�1C g=Z2)o; and the latterspace is (n+ 1)-connected. Therefore, 2� is homotopic to zero.Now, Lemma A.1 and Corollary A.4 provide a canonical map

H : Z0(Sn)o 
 Z2 ! Z0(S2n)fixo ;
unique up to homotopy, with the property that
(8.11) H �Q ' ��:
Let us apply Corollary A.4 once again, with Y = Z0(Sn)o 
 Z2 and h being the com-

position Sn j! Z0(Sn)o Q! Z0(Sn)o 
 Z2 where j(x) = x � x1. Using (8.11), we obtain(P �H) �Q ' P � ��, and since P � �� = Q, cf. (8.10), we conclude that
(P �H) �Q ' Q = id �Q = (Q � j)�:

Therefore both (P � H) and id satisfy the same condition in Corollary A.4, and since�n+1(Z0(Sn) 
 Z2) = 0 one obtains P � H ' id. Therefore, H is the desired homotopysection of P . This proves the �rst assertion. The second follows easily from 8.3. �
There are two distinct ways to complete the computation at this point. The �rst oneoccurs at the space level and the other, suggested by the referee, takes place at the level
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of simplicial groups. The �rst is elementary and involves the Dold-Thom Theorem [DT],while the second has a more \motivic" nature. We shall present them both.First, apply Lemma 8.4 when X = S2n = Cn [ f1g, under complex conjugation
and n > 0. Since S2n=Z2 = Sn#Pn�1R , one has ~Hk(S2n=Z2;Z) �= ~Hk(Sn#Pn�1R ;Z)�= ~Hk�n�1(Pn�1R ;Z). Hence the spaces S2n=Z2 satisfy the hypothesis of Theorem A.5and we obtain a canonical splitting

Z0(S2n)avo = Z0(S2n=Z2)o �= 2nY
k=0K( ~Hk(S2n=Z2;Z); k)

�=
2nY

k=n+1K( ~Hk�n�1(Pn�1R ;Z); k):
Together with (8.6) and Proposition 8.1 this splitting yields the following.
Theorem 8.6. The group of averaged cycles of codimension q and degree 0 in PNC isconnected and has a canonical splitting into products of Eilenberg-MacLane spaces

Zq(PNC )avo �=
qY

n=0
nY

k=1K
�Hk�1(Pn�1R ;Z); k + n� :

The homotopy groups ��(Zq(PNC )av) have the structure of a bigraded abelian group ��(Zq(PNC )av) �=Ln;k�0 Iavn;k where
Iavn;k � �n+k �Z0(PnC=Pn�1C )o	av �= ~Hk�1(Pn�1R ;Z);

for n+ k > 0, and I0;0 = 2Z. In other words,

Iavn;k =
8>>><
>>>:

2Z ; if n = k = 0;
0 ; if k is odd, or k > n, or n > q;
Z ; if k = n � q and k � 2 is even;
Z2 ; if k < n � q and k � 2 is even:

This is just Theorem 3.4. Combining it with (8.8) and (8.9) proves Theorem 3.3.
Remark 8.7. note that the results in this section prove in particular that:

(1) The inclusion i : Zq(PNC )av ,! ZqR(PNC ) induces an inclusion of homotopy groups asdirect summands;
(2) The inclusion ZqR(PNC ) ,! Zq+1R (PN+1C ) induced by the inclusion of PNC as a linear

subspace of PN+1C induces an inclusion of homotopy groups as direct summands.
We now present an alternative approach to prove Theorem 3.3. Let X = jX�j be thegeometric realization of a simplicial set X� on which the group Z2 acts simplicially, and letZ(X�) denote the simplicial free abelian group generated by X�. Note that Z(X�) becomesnaturally a simplicial Z2-module under the induced action � : Z(X�)! Z(X�).
If Z2-Mod and Ab denote the categories of Z2-modules and abelian groups, respectively,then the functors

Ker(1� �) : Z2-Mod! Ab and Im(1 + �) : Z2-Mod! Ab
are additive functors which send a Z2-module M to Mfix and Mav, respectively.
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Lemma 8.8. With X� as above:
(1) One has a natural equivariant identi�cation Z0(X) = jZ(X�)j.(2) Under this identi�cation one has Z0;R(X) = jZ(X�)fixj and Z0(X)av = jZ(X�)avj.In other words, the real and averaged 0-cycles on X are obtained as the geomet-ric realization of the simplicial abelian groups obtained by applying the functorsKer(1� �) and Im(1 + �) to Z(X�).

Proof. We leave the proof of this rather straightforward fact to the reader. �
Proof. [of Theorem 3.3 (2nd version)] Let S1;1 denote the simplicial set with two zero-simplices 0 and1 (1 is the base point) and two non-degenerate 1-simplices. Give S1;1 thetrivial Z2 action and note that its geometric realization is the circle seen as the one-pointcompacti�cation of the trivial representation R. Now, let S0;1 denote the same simplicialset with the Z2 action that interchanges the two 1-simplices and keeps the 0-simplices�xed. The geometric realization of the latter is the one-point compacti�cation of the sign
representation. Denote Sn;n def= (S1;1)^n and S0;n def= (S0;1)^n.It follows from Proposition 8.2 that the theorem is proven once we compute the homotopygroups of Z0;R(S2n)o, where S2n is the one-point compacti�cation of Cn. It follows from
Lemma 8.8 that Z0;R(S2n)o = jeZ(Sn;n ^ S0;n)j, where, for any equivariant simplicial set
X�, eZ(X�) denotes the kernel of the natural augmentation Z(X�)! Z.
Remark 8.9. Given X� as above, the homotopy groups of jeZ(X�)j are obtained as the
homology of the normalized chain complex eZnorm(X�). Similarly, the homotopy groups of
jeZ(X�)fixj are given by the homology of the complex eZnorm(X�)fix, which is easily seen
to be the normalized chain complex associated to the simplicial abelian group eZ(X�)fix.
Notice that the normalized chain complexes of Z[Z2]-modules eZnorm(Sn;n) and eZnorm(S0;n)both have the form Cn ! Cn�1 ! � � � ! C0, and both have just one homology group indegree n. In the �rst case, this group is simply Z with the trivial Z2-action, and in thelatter the n-th homology is Z(n), i.e. the group Z with Z2 action given by multiplicationby (�1)n.It follows that one has an equivariant homotopy equivalence

(8.12) eZnorm(Sn;n) ' Z[�n];
where Z is seen as a Z[Z2]-complex concentrated in degree zero, and Z[�n] is its usual shift.As to eZnorm(S0;n), �rst observe that all terms Ci are free Z[Z2]-modules, except forC0, since the only non-degenerate simplices in S0;n �xed by the action of Z2 are zerodimensional. Now, denote Ai = HomZ(Cn�i;Z) and observe that one obtains an exactsequence An ! � � � ! A0 ! Z(n)! 0;
where the Ai's are free, except in dimension n. Here, we use the fact that one has isomor-phisms of Z[Z2]-modules HomZ(Z[Z2];Z) �= Z[Z2] and HomZ(Z(n);Z) �= Z(n). It followsthat this exact sequence is a truncated (at level n) projective resolution of Z(n) in the
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category of Z[Z2]-modules. Applying the functor HomZ2(Z2;�), and using the fact that
HomZ2(Z2;M) =Mfix, for any Z2-module, it follows that the homology of eZnorm(S0;n)fixis given by:
(8.13) Hk(eZnorm(S0;n)fix) =

� Hn�k(Z2;Z(i)) ; for 0 � k � n
0 ; for k > n or k < 0:

The (equivariant) K�unneth formula gives an equivariant homotopy equivalence eZnorm(Sn;n^S0;n) �= eZnorm(Sn;n)
 eZnorm(S0;n) which, together with (8.12) gives an equivariant ho-motopy equivalence eZnorm(Sn;n ^ S0;n) �= eZnorm(S0;n)[�n];
hence eZnorm(Sn;n^S0;n)fix �= eZnorm(S0;n)fix[�n]: This equivalence, together with (8.13),gives the desired computation:

�n+k(Z0;R(S2n)) = Hn+k(eZnorm(S0;n)fix[�n]) = Hk(eZnorm(S0;n)fix):
These cohomology groups are well-known and seen to coincide with the groups In;k. Thisconcludes the alternative proof of Theorem 3.3. �We now sketch an answer to Question 5.3, using the techniques developed in the proofabove. The inclusion Z0;R(S2n)o ! Z0(S2n)o is a homomorphism of topological abeliangroups induced by a homomorphism of corresponding simplicial abelian groups
(8.14) eZ(Sn;n ^ S0;n)fix ! eZ(S2n;2n):
In order to understand this map, we invoke the Dold-Kan correspondence which statesthat the normalized chain complex functor gives equivalence between the categories ofsimplicial abelian groups and chain complexes in non-negative degrees. We have seen that
one has a quasiisomorphism eZnorm(S2n;2n) ' Z[�2n], and (8.13) gives quasiisomorphisms

eZnorm(Sn;n ^ S0;n)fix '
( Z[�2n] �n=2�1i=0 Z2[�n� 2i] ; if n is even
�(n�1)=2i=0 Z2[�n� 2i] ; if n is odd:

Under the Dold-Kan correspondence, the map (8.14) is given by a homomorphism ofnormalized complexes, and these homomorphisms are classi�ed by Ext groups (over Z).In the even case (n > 0) the map from Z[�2n] to itself is the identity, since the generatorof �2n(Z0(S2n)o) can be obtained using only real cycles. The other components, given by
maps Z[�n� 2i]! Z[�2n], are trivial since they are elements in Extn�2iZ (Z2;Z) = 0.In the odd case, the only component which may not be zero comes from the map Z[2n�1] ! Z[2n]. Following carefully the computation of the equivariant homotopy type ofeZnorm(S0;n) one obtains that this cohomology class is precisely �(e{2n�1).

x9. The ring structure. The algebraic join of cycles, de�ned for example in [L1], [L2],and [FM] is equivariant with respect to conjugation and de�nes biadditive pairings
ZqR(Pn) ^ Zq0R (Pn0) �! Zq+q0R (Pn+n0+1). This induces a pairing

# : Z1R ^ Z1R �! Z1R ;
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where Z1R = limn;q!1ZqR(Pn), which makes Z1R an E1-ring space. (See x6.) Theinduced map
(9.1) ��Z1R 
 ��Z1R �! ��Z1R
makes ��Z1R a graded ring. In this section we shall compute this ring and give explicitrepresentatives for the generators.To set the background we recall two analogous cases. Let

Z1 = limn;q!1Zq(Pn) and eZ1R = limn;q!1 eZqR(Pn):
These are E1-ring spaces as seen in [BLLMM], and their homotopy groups form gradedrings. Results from [FM] establish an isomorphism
(9.2) ��Z1 �= Z[s]
where s corresponds to the generator of �2Z1 �= Z. Results of [Lam] show that
(9.3) �� eZ1R �= Z2[y]
where y corresponds to the generator of �1 eZ1R �= Z2. The main result of this section is thefollowing theorem which neatly organizes the additive results of x8. Let Z1av � Z1R be thesubspace de�ned by taking the limits of the subgroups Zqav(Pn) � ZqR(Pn) as above. Notethat the join of an averaged cycle with a �xed cycle is again an averaged cycle.
Theorem 9.1. There is a ring isomorphism
(9.4) ��Z1R �= Z[x; y]=(2y)
where x corresponds to the generator of �4Z1R �= Z and y corresponds to the generator of�1Z1R �= Z2, and where (2y) denotes the principal ideal in the polynomial ring generatedby 2y. Furthermore, under this isomorphism the ideal ��Z1av � ��Z1R corresponds to theideal
(9.5) ��Z1av �= (2; x)
generated by 2 and x.
Proof. To begin we introduce a doubly indexed �ltration on ��Z1R and show that it iscompatible with the multiplication (9.1). Consider the direct sum C1 with coordinates(z0; z1; z2; : : : ); zj = xj + iyj , and for each n set Cn+1 = fz 2 C1 : zj = 0 for j > ng. Foreach k, 0 � k � n , we consider the conjugation invariant subspace

V n;k = fz 2 Cn+1 : yj = 0 for j � kg �= Ck � Rn+1�k:
and set Pn;k = �(V n;k � f0g)
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where � : Cn+1 � f0g �! Pn is the projection. Note that V n;k � V n0;k0 if n � n0 andk � k0, and that dimR Pn;k = n+ k:
De�nition. Let ZqR(Pn;k) � ZqR(Pn) denote the subgroup generated by e�ective cyclesc for which
(9.6) dimR �jecj \ V n;k� � dimC (jecj)
where jecj = ��1(jcj) � Cn+1 denotes the homogeneous cone corresponding to the supportjcj of c. The inclusions ZqR(Pn;k) � ZqR(Pn) � Z1R induce homomorphisms
(9.7) ��ZqR(Pn;k) �! ��Z1R
Observation 9.2 The image of the homomorphism (9.7) remains constant under con-tinuous deformations of Cn through Real subspaces of C1
Observation 9.3 The homomorphism

��ZnR(Pn;k) �! ��Z1R
is injective. This follows from the results in 8.6 concerning 0- cycles.
Observation 9.4 Taking algebraic suspension by adding coordinates on the left gives acommutative diagram

(9.8)
��ZnR(Pn;k) j����! ��Z1R
e�= �̀
??y jj??y�= �̀

��ZnR(Pn+`;k+`) j`����! ��Z1R
where j is injective by 9.3, �= �̀ is an isomorphism, and e�= �̀, induced by the restriction ofthe suspension map, is therefore also injective.
We set

Fn;k def= j��ZnR(Pn;k)
and note that Fn;k gives a bi�ltration of ��Z1R , namely

Fn;k � Fn0;k0 if n � n0 and k � k0:

Proposition 9.5 The homomorphism e�= �̀ in (9.8) is an isomorphism. Consequently,
Fn;k = Im(j`) for all ` > 0:
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Proof. In fact the map e�= �̀ : ZnR(Pn;k)! ZnR(Pn+`;k+`) is a homotopy equivalence. To seethis one repeats the arguments of [Lam] which prove that �= � : ZqR(Pn) �! ZqR(Pn+1) isa homotopy equivalence, and one notes that all steps preserve the subgroups ZqR(Pn+1;�).More speci�cally, there are two fundamental constructions in this proof: pulling to thenormal cone and \magic fans".We begin with pulling to the normal cone. Let's introduce homogeneous coordinates(z; x) 2 Ck � Rn+1�k = V n;k � Cn+1 and (�; z; x) 2 C � Ck � Rn+1�k = V n+1;k+1 �Cn+2. Consider the multiplicative 
ow 't on Pn+1 de�ned in homogeneous coordinatesby 't(�; z; x) = (t�; z; x) for t 2 R+. This 
ow induces \pulling to the normal cone" in[Lam]. It evidently preserves condition (96) above, and therefore preserves the subgroupof algebraic cycles ZqR(Pn+1;k+1).In the \magic fan" construction one adds a new coordinate giving (�; �; z; x) 2 C �C � Ck � Rn+1�k = C � V n+1;k+1. To each homogeneous polynomial f(�; �; z; x) withreal coe�cients one constructs a transformation �f : ZqR(Pn+1) ! ZqR(Pn+1) by setting
�f (c) = (�1)� (��0c �Df ) whereDf is the divisor of f , and �0; �1 are projections Pn+2C ���� >Pn+1C with vertices (1; 0; 0; : : : ; 0) and (1; 1; 0; : : : ; 0) respectively. We need to check that
this construction preserves the subgroups ZqR(Pn+1;k+1). For this let eY � Cn+2 denote
the homogeneous cone of a projective variety Y � Pn+1. It will su�ce to show that
(9.9) dimR �eY \ V n+1;k+1� � dimR � g(�fY ) \ V n+1;k+1�

To see this consider a point a 2 Y with homogeneous coordinates (�; z; x) 2 eY \V n+1;k+1.
Let �1; : : : ; �d be the zeros of the polynomial q(t) = f(t; �; z; x). Then ��10 (a) \ Dfconsists of the d points with homogeneous coordinates (�j ; �; z; x), j = 1; : : : ; d, and
�1 ���10 (a) \Df� is the union of the d points with homogeneous coordinates (�j � �; z; x),j = 1; : : : ; d. Note that each of these points again lies in V n+1;k+1. It follows that con-dition (9.9) holds as claimed. Therefore the arguments of [Lam] apply without change to
show that e�= is a homotopy equivalence, and we are done. �
The analogues of 9.2 { 9.5 apply also to the averaged cycles:

Zqav(Pn;k) = ZqR(Pn;k) \ Zqav(Pn)
One obtains a bi�ltration Fn;kav of ��Z1av where the n-�ltration agrees with that of Theorem
8.5. Under the isomorphism ��Z1av �= eH�(X1;Z) deduced in x8 (See 8.3), consider theclasses
(9.10) �n;k = [Pn;k=Z2] 2 eHn+k(X1;Z) �= �n+kZ1av for 0 < k � n:
Note that the intersection of Pn;k with the a�ne coordinate chart PnC � Pn�1C = Cn =Rn� iRn is exactly Rn� iRk. Therefore, the image of �n;k in the homology of Xn=Xn�1 =
S2n=Z2 is the class Sn#Pk�1R . Hence this image generates the group Iavn;k in the bigrading
established in Theorem 8.5.It follows that
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Fn;kav = spanZf�n0;k0 : n0 � n and k0 � kg;
and furthermore that under the injection ��Z1av ,! ��Z1R we have that
(9.11) Fn;kav = Fn;k \ ��Z1av :
In particular, we deduce that for 0 < k � n

Iavn;k def= Fn;kav \ �n+kZ1av = h�n;ki
�= Fn;kav =Fn�1;kav �Fn;k�1av

and Iavn;0 = f0g. For 0 � k � n set In;k � Fn;k \ �n+kZ1R . From Theorem 8.2 we know
that In;0 �= �nfZ0(P � Cn=P � Cn�1)ogfix = Z2. Let �n;0 denote the generator of In;0.(an explicit representative will be given later). Then we have that for 0 � k � n

In;k def= Fn;k \ �n+kZ1R = h�n;ki�= Fn;k=Fn�1;k �Fn;k�1
It is useful to picture the graded peices In;k on the (n; k)-coordinate grid.

k " : : :Z : : :0 0 : : :Z Z2 Z2 : : :0 0 0 0 : : :Z Z2 Z2 Z2 Z2 : : :0 0 0 0 0 0 : : :Z Z2 Z2 Z2 Z2 Z2 Z2 : : :0 0 0 0 0 0 0 0 : : :Z Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 : : :0 0 0 0 0 0 0 0 0 0 : : :Z Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 : : : �!n
The graded subgroup Iavn;k � In;k looks like this:

k " : : :Z : : :0 0 : : :Z Z2 Z2 : : :0 0 0 0 : : :Z Z2 Z2 Z2 Z2 : : :0 0 0 0 0 0 : : :Z Z2 Z2 Z2 Z2 Z2 Z2 : : :0 0 0 0 0 0 0 0 : : :Z Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 : : :0 0 0 0 0 0 0 0 0 0 : : :2Z 0 0 0 0 0 0 0 0 0 0 : : : �!n
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Note that In;k = Iavn;k for k > 0 and eI�;� � I�;�=Iav�;� is simply:
k " 0 0 0 0 0 0 : : :0 0 0 0 0 0 0 : : :0 0 0 0 0 0 0 0 : : :0 0 0 0 0 0 0 0 0 : : :0 0 0 0 0 0 0 0 0 0 : : :Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 : : : �!n

Our main observation here is the following.
Proposition 9.6. The �ltrations Fn;k and Fn;kav are compatible with the join pairing, i.e.,

#�Fn;k 
Fn0;k0� � Fn+n0;k+k0 and #�Fn;kav 
Fn0;k0av
� � Fn+n0;k+k0av

Proof. By Observation 9.2 the join gives a well de�ned homomorphism
��ZnR(Pn;k)
 ��Zn0R (Pn0;k0) �! ��Zn+n0R (Pn+n0+1;k+k0+1):

Pushing into ��Z1R and applying 9.5 gives the result for F�;�. The argument for F�;�av issimilar. �
Lemma 9.7. The generators �2;2 2 �4Z1R �= �4Z1av �= Z and �1;0 2 �1Z1R have theproperty that �2;2 2 F2;2 and �1;0 2 F1;0

Proof. RecallXq � PqC=Z2. (See Cor. 8.4.) Under the isomorphisms �4Zqav �= �4Z0(Xq) �=H4(Xq;Z) �= Z, the generator �2;2 corresponds to the class [X2] 2 H4(Xq;Z) for any q � 2.Thus �2;2 2 F2;2. For the second assertion recall that the generator of �1Z1R is given bythe map S1 �! Z0(P1R) � Z0(P1C) sending t 7! t� t0 for t 2 P1R �= S1 (where t0 2 P1R is abase point). �
Proposition 9.8. A) �k2;2 = �2k;2k in �4kZ1av :B) �k2;2 � �1̀;0 6= 0 in �4k+`Z1av :
Proposition 9.8 ) Theorem 9.1. From results in x8 we have an exact sequence
(9.12) 0 �! ��Z1av �! ��Z1R p��! �� eZ1R �! 0
and we know that the elements p�(�1̀;0); ` � 1, give an additive basis of �� eZ1R . In fact,
p� is a ring homomorphism and p�(�1;0) corresponds to y in (9.3).We have seen that under the identi�cation

��Z1av �= H�(X1;Z)
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the bi�ltration of ��Z1av corresponds to the bi�ltration of H�(X1;Z) induced by the familyof subspaces Pn;k=Z2 in X1. From the results of x8 we have that
F�;oddav = 0

and
F2k+`;2kav \ �4k+`Z1av =

� Z � �2k;2k if ` = 0
Z2 � �2k+`;2k if ` > 0:

Since �k2;2 � �1̀;0 2 F2k+`;2kav \ �4k+`Z1av ;
the conclusion of Proposition 9.8 implies that �k2;2 � �1̀;0 = �2k+`;2k. �Proof of Proposition 9.8 We begin by constructing explicit representatives of �1;0 and�2;2.Consider S1 = P1R � P1C, the �xed- point set, and choose a base point t0 2 S1. De�ne
(9.13) � : S1 �! Z1R(P1)
by �(t) = t� t0:
This map clearly has �ltration level (1,0) since the image is supported in P1R. One sees
directly that under the projection p� : Z1R(P1) �! eZ1R(P1C) = Z0(P1R) 
 Z2 the mapp� � � represents the generator of �1(Z0(P1R)) �= H1(P1R;Z2) �= Z2. Hence � represents thenon-zero class �1;0 in �1Z1R = Z2.Consider P1R � P1C as the \equator" and let D2 � P1C be the \upper hemisphere", (soP1C = D2 [D2 where (�) is the conjugation map). For each n � 1 we de�ne a map
(9.14) �n : (D2)n �! Zn(P2n�1C )
by �n(t1; : : : ; tn) = (t1 � �t1)# : : :#(tn � �tn):
Note that �n(t1; : : : ; tn) = 0 if tj 2 @D2 = P1R for any j. Thus �n descends to a map

�n : S2 ^ � � � ^ S2 = S2n �! Zn(P2n�1C ):
Note that �1(t) = ��1(t), that is �1 maps into anti-averaged cycles. The join of twoanti-averaged cycles in an averaged cycle. Since �n(t1; : : : ; tn) = �1(t1)# : : :#�n(tn) wesee that �n : S2n �! Znav(P2n�1C )
whenever n is even.From Observation 9.5 we see that the class [�2] of �2 : S4 ! Z2av(P3) = Z2av(P3;3)in �4Z1av has �ltration level (2,2). It follows that the class [�2n] = [�2]n 2 �4nZ1av has�ltration level (2n; 2n).
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Lemma 9.9. The map �n : S2n �! Zn(P2n�1C ) represents the generator of �2nZ1 �= Z.
Proof. Recall that �1 : (D2; @D2) �! (Z0(P1C; 0) is given by �1(t) = t � �t. To compute
the class of �1 in �2Z0(P1C) = H2(P1C;Z) we take the graph �(�1) in S2 � P1C and push
it forward to P1C (cf. [FL]). Now �(�1) is an oriented cycle which is the union of twooriented disks �0 [ �1. The disk �0 is the graph of the identity map D2 ! D2+ on the
upper hemisphere with the canonical orientation from D2; the disk �1 is the graph of theconjugation map D2 ! D2� from the upper to the lower hemisphere with the orientation
opposite the one given by D2 due to the minus sign in �1. Note that �0 [ �1 � S2 � P1Cis an oriented 2-sphere homeomorphic to P1C under projection to the second factor.

This shows that �1 represents the generator s of �2Z1. It follows that �n = �1# : : :#�1represents sn 2 �2nZ1, which is the generator by 9.2. �
Lemma 9.10. For any N � 2n, the homomorphism I� : �4nZ2nav (PNC ) �! �4nZ1, in-
duced by the inclusion i : Z2nav (PNC ) ,! Z1, is an isomorphism.
Proof. By the Algebraic Suspension Theorem [L1], [LLM2] it su�ces to consider the mapof 0-cycles Z2nav (P2nC ) �! Z2n(P2nC ). Note that the composition

Z2nav (P2nC ) i�! Z2n(P2nC ) av�! Z2nav (P2nC )
where av(x) = x+ �x, is multiplication by 2, and so therefore is the composition

�4nZ2nav (P2nC ) i�����! �4nZ2n(P2nC ) av�����! �4nZ2nav (P2nC )
jj jj jj
Z Z Z

On the other hand the homomorphism av� can be identi�ed with the homomorphism�� : H4n(P2nC ;Z) �! H4n(P2nC =Z2;Z) where � : P2nC �! P2nC =Z2 is the quotient map. Thismap clearly sends the fundamental class [P2nC ] to 2[P2nC =Z2]. Hence av� = 2 and so i� mustbe an isomorphism. �
Corollary 9.11. The map �2 represents the generator �2;2 of �4Z2av(P3C). Furthermore,for all n � 1 one has that �n2;2 = �n;n.
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Proof. The �rst assertion follows immediately from 9.9 and 9.10. For the second we recallthat [�2n] = [�2]n in ��Z1av , and use (9.2). �
This establishes part A) of Proposition 9.8. For part B) we invoke the following. Considera continuous map f : Sm ! Zqav(PNC ) and let � : PNC ! XN be the projection. Then

��f(x) = 2 �f(x) where �f : Sm ! Zq(XN ) is a continuous map into cycles on XN . Assumethat f is well enough behaved to have a graph �f in Sm � PNC (cf. [FL]). Then (1 �
��)[�f ] = 2[� �f ] where � �f is a cycle on Sm � XN which we will call the graph of �f . Let
pr : Sm �XN ! XN be projection.
Lemma 9.12. If [pr�� �f ] 6= 0 in H�(XN ;Z), then [f ] 6= 0 in �mZqav(PNC ).
Proof. Suppose f : @Dm+1 ! Zqav(PNC ) extends to a continuous map F : Dm+1 !
Zqav(PNC ) which we may assume to have a graph. Then the integral chain pr�� �F has
boundary pr�� �f in XN . �
To detect homology classes in XN we will use the following.

Lemma 9.13. Let Z � XN be an integral cycle of codimension ` < N de�ned by theoriented regular set of a real analytic subvariety. Let PNR � XN = PNC =Z2 denote the
singular set of XN . Suppose there exists a compact oriented submanifold Y ` ,! XN �PNRof dimension ` which meets the regular set of Z transversely in one point. Then [Z] 6= 0in H2N�`(XN ;Z).
Proof. LetM = XN�(PNR )� where (PNR )� is a tubular neighborhood of PNR whose closure
does not meet Y `. Note that M is a smooth compact oriented manifold with boundary.The restriction Z� � Z \M de�nes an integral cycle of codimension ` on (M;@M), andY ` de�nes a cycle of dimension ` on M . The intersection hypothesis implies that [Z�] 6= 0in H2N�`(M;@M) �= H2N�`(XN ;PNR ). In the long exact sequence for the pair (XN ;PNR )we have

Hj(PNR ) �! Hj(XN ) r�! Hj(XN ;PNR );
and it is clear from the construction that r([Z]) = [Z�]. �
To complete the proof of Proposition 9.8 B) we consider the map

f � �2n�` : S4n+2` �! Z2n+`(P4n+`�1C )
where we may assume that ` is odd. This map can be coordinatized as follows. Choosea�ne coordinates x1; : : : ; x2n; y1; : : : ; y` on P1C � � � � � P1C ((2n + `)- times) and restrictthem to Im(xi) � 0 and Im(yj) = 0 for all i; j:
Let �xi = span(1; xi) and �yj = span(1; yj) in C2. Then

f(x; y) = (�x1 � �x1)# : : :#(�x2n � �x2n)#(�y1 � �0)# : : :#(�y` � �0):
Note that f = av � �f where

�f(x; y) = �x1#(�x2 � �x2)# : : :#(�x2n � �x2n)#(�y1 � �0)# : : :#(�y` � �0):
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Consider the a�ne chart C4n+2`�1 on P(C2 � � � � � C2) = P(C4n+2`) given be setting the�rst coordinate equal to 1. Let CN=Z2 be its image in XN where N = 4n+ 2`� 1. ThenZ = pr�(� �f ) is an analytic cycle whose image in CN=Z2 is described as follows. Note that �f
expands into 22n�1+` factors. However those factors containing the constant �0 project to0 for dimension reasons. Thus it su�ces to consider the remaining 22n�1 factors. Upstairsin CN they are subsets of the form
Z������ = [�x1 + span

�
(0; 1; x2; 0; :::; 0); (0; 0; 0; 1; x3; 0; :::; 0); : : : ; (0; : : : ; 0; 1; x2n; 0; :::; 0);

(0; : : : ; 0; 1; y1; 0; :::; 0); : : : ; (0; : : : ; 0; 1; y`)
��

where the union is over all x; y with Im(yi) = 0 for all i and �Im(xj) � 0 depending on
the choice of + or � in the jth subscript of Z������. These sets can be rewritten as

Z������ = �(z2; :::; z4n; w1; :::; w2`) : Im(z2) � 0;
� Im(z2j�1z2j) � 0 8j > 2; and Im(w2i�1w2i) = 0 8i	

The union of these, with orientations adjusted for signs, is the oriented semi-analytic set
eZ = �(z; w) 2 C4n�1 � C` : Im(z2) � 0 and Im(w2i�1w2i) = 0 8i	

Thus, in this coordinate chart CN=Z2 our total cycle � �f � XN is exactly the reduced
image of the real analytic variety de�ned by the equations Im(w2i�1w2i) = 0, i.e.,

� �f \ (CN=Z2) = 12���(z; w) : Im(w2i�1w2i) = 0 8i	

where � : CN ! CN=Z2 is the projection.Consider now the sphere
eY =

�
(0; 0; : : : ; 0; 1; it0; 1; it1; : : : ; 1; it`) : ti 2 R 8i and X

i t2i = 1
�

and let Y = �(eY ) �= PR̀ be its reduced image in CN=Z2 � XN . Note that Y misses
the singular set �(RN ) and Y meets � �f in exactly one point, namely the conjugate paircorresponding to t1 = � � � = t` = 0 and t0 = �1. One easily checks that this is a regular
point of eY . This completes the proof. � �
xA. Appendix: Splittings and Eilenberg-MacLane spaces.
A.1. Models for Eilenberg-MacLane spaces
In our discussion, the preferred model for the Eilenberg-MacLane space K(Z; n) isZ0(Sn)o, the connected component of 0 in the topological abelian group Z0(Sn). If N
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is a �nitely generated abelian group, then Z0(Sn)o 
Z N is our model for K(N;n). Notethat this model for K(N;n) is a topological R-module, and in particular, this model forK(Zp; n) is a p-torsion group.
Now, for each p �x a map fp : Sn ! Sn of degree p, and de�ne

M(Zp; n) def= Dn+1 [fp Sn:
This is a Moore space satisfying

eHj(M(Zp; n);Z) �=
� Zp if j = k
0 otherwise.

It follows that we have yet another model for K(Zp; n), namely, the torsion free abeliantopological group Z0(M(Zp; n))o. We need to establish a few properties of M(Zp; n) andof Z0(M(Zp; n))o:Consider the canonical inclusion { : Sn ,! M(Zp; n), and let Fp : Dn+1 ! M(Zp; n)be the canonical map which induces the relative homeomorphism Fp : (Dn+1; Sn) !
(M(Zp; n); Sn) and satis�es Fp��@Dn+1= fp.The following result is rather standard.
Lemma A.1. Given a map h : Sn ! Y such that h � fp is homotopic to zero, then there
is an extension of h to M(Zp; n). In other words, there is an h : M(Zp; n)! Y such that
h � { = h. Furthermore, if �n+1(Y ) = 0, then the extension is unique up to homotopy.
Corollary A.2. Let h : Sn ! Y be as in Lemma A.1, and assume that Y is an abeliantopological group.

(1) If h sends the base-point x1 2 Sn to 0 2 Y , then one has a commutative diagram

Sn {����! M(Zp; n) h����! Y
jS??y ??yjM ??y=
Z0(Sn)o ����!{� Z0(M(Zp; n))o ����!h� Y;

where jS and jM are natural inclusions, and {� and h� are the group homomorphismsinduced by { and h, respectively.(2) If �n+1(Y ) = 0 then any continuous homomorphism � : Z0(M(Zp; n))o ! Y ,
with the property � � {� � jS = h, is homotopic to h� through continuous grouphomomorphisms with this property.

Proof. The �rst assertion is a direct consequence of the fact that Y is an abelian topologi-cal group and from universal properties of the free abelian group onM(Zp; n). To prove thesecond assertion, consider the map ��jM :M(Zp; n)! Y . Since (��jM )�{ = ��{��jS = h,
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one concludes from the proposition that � � jM is homotopic to h relative to i, and hence� = (� � jM )� is homotopic to h� through homomorphisms as claimed. �
Corollary A.3. Let q : Z0(Sn)o ! Z0(Sn)o 
 Zp denote the quotient map. Then thereis a canonical homotopy equivalence 	 : Z0(M(Zp; n))o ! Z0(Sn)o 
 Zp satisfying

(1) 	 is a group homomorphism;(2) 	 � {� = q:
Furthermore, any 	0 satisfying the above properties is homotopic to 	 through such ho-momorphisms.
Proof. Just observe that the composition (q � jS) � fp is homotopic to multiplicationby p in the homotopy group �n(Z0(Sn)o 
 Zp), and hence q � jS satis�es the hypothesisof Corollary A.2. It is easy to see that the homomorphism resulting from Corollary A.2induces an isomorphism of n-th homotopy groups and is therefore a homotopy equivalence.Since q = (q � jS)�, the result follows. �
Corollary A.4. Given an abelian topological group Y and a map h : Sn ! Y such thath � fp ' 0, there is a map

H : Z0(Sn)o 
 Zp ! Y
satisfying H � q ' h�. Furthermore, if �n+1(Y ) = 0, then any eH : Z0(Sn)o
Zp ! Y witheH � q ' h� is homotopic to H through maps with this property.
Proof. Let 	�1 : Z0(Sn)o
Zp ! Z0(M(Zp; n))o be a homotopy inverse of the canonical	 de�ned in the previous Corollary, and let h� : Z0(M(Zp; n))! Y be the homomorphism
established in Corollary A.2. De�ne H def= h� �	�1, and note that H � q = h� �	�1 � q 'h� � {� = (h � {)� = h�, where the �rst equivalence follows from Corollary A.3. This is
the desired H. To prove the last statement note that eH � 	 is homotopic to h� throughhomomorphisms extending h. Hence, eH = eH �	 �	�1 is homotopic to h� �	�1 = H. �
A.2. Canonical splittings
It is a general theorem of J. Moore that any topological abelian group is homotopyequivalent to a product of Eilenberg-MacLane spaces. However, there are many inequiva-lent such splittings, and for the results in these papers and in [LM1] one makes a canonicalchoice. For the particular examples of cycle groups that we study, the choice depends onthe structure of Pn as a symmetric product of P1. However, in many cases the canonicalsplitting is determined purely homotopy theoretically. This is the main result of this Ap-pendix. The existence of a theorem of this type was �rst pointed out to the authors byEric Friedlander.Throughout this discussion, the ring R will always be either Z or Z=n; and we shalluse the speci�c model Z0(Sn)o for the Eilenberg-MacLane space K(Z; n). More generallyfor any �nitely generated module N over R, we shall take K(N;n) = Z0(Sn)o 
Z N .Let us �x a �nitely generated R-module N and denote K = K(N;n). One has anisomorphism

hK;R : �n(K)
R = N 
R �=��! Hn(K;R);
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obtained as the composition of isomorphisms N
R = �n(K)
R hK
I����! Hn(K;Z)
R �K��!Hn(K;R); where hK is the Hurewicz map and �K is provided by the universal coe�cientstheorem for homology.
It follows from the universal coe�cients theorem for cohomology that

	K;R : Hn(K;N)! HomR(Hn(K;R); N)
is an isomorphism, and the fundamental class �n 2 Hn(K;N) is de�ned so that 	K;R(�n)
is the composition Hn(K;R) h�1K;R���! �n(K) 
 R = N 
 R �N��! N; where the latter mapgives the R-module structure on N . Therefore,
(A.1) 	K;R(�n) = �N � h�1K;R:
We now examine these maps under the Dold-Thom theorem, which gives natural iso-morphisms

(A.2) dY;R : �n(Z0(Y )
R)! Hn(Y ;R)
for any CW -complex Y and for all n.
Since K is a topological abelian group, one has a topological homomorphism

(A.3) tK : Z0(K)! K
such that the composition Z0(K)
R tK
I���! K 
R �K��! K induces a left inverse
(A.4) tK;R : Z0(K)
R! K
to the natural inclusion
(A.5) jK;R : K ! Z0(K)
R:
In the level of homotopy groups, this map �ts into a commutative diagram

N 
R = �n(K)
R �=����!hK;R Hn(K;R)
�N??y �=x??dK;R

N = �n(K)  �������n(tK;R) �n(Z0(K)
R);

which together with (A.1) implies that
(A.6) 	k(�n) = �n � h�1K;R = �n(tK;R) � d�1K;R:
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We now consider a map f : Y ! K = K(N;n), representing a class [f ] 2 Hn(Y;N).From the commutative diagram
Hn(Y ;N) 	Y����! HomR(Hn(Y ;R); N) ����! 0
Hn(f)x?? x??Hn(f)�
Hn(K;N) 	K����! HomR(Hn(K;R); N) ����! 0

one concludes that
(A.7) 	Y ([f ]) = 	Y (Hn(f)(�n)) = 	K(�n) �Hn(f)
and (A.6) gives

	Y ([f ]) = �n(tK;R) � d�1K;R �Hn(f):
Let

(A.8) f : Z0(Y )
R! K
be the R-module homomorphism given by the composition Z0(Y )
 R Z0(f)
I�����! Z0(K)

R tK;R���! K: This map induces a commutative diagram

�n(Z0(Y )
R) �n(Z0(f)
I)��������! �n(Z0(K)
R) �n(tK;R)������! �n(K) = N
dY;K??y dK;R??y 



Hn(K;R) ����!Hn(f) Hn(K;R) �����!	K(�n) �n(K) = N;

where the left square commutes by the naturality of the Dold-Thom isomorphism, and theright square commutes by (A.6).
It follows that �n(f) = 	K(�n) �Hn(f) � dY;R; and by (A.7) one concludes that

(A.9) �n(f) = 	Y ([f ]) � dY;R:
We now use the formulae above to prove the following result.

Theorem A.5. Let Y be a connected �nite complex and R = Z or Z=n. Suppose that
	Y : Hn(Y ; Hn(Y ; R)) ! Hom (Hn(Y ; R); Hn(Y ; R))

is an isomorphism for all n. Then there exists a homotopy equivalence
Z0(Y )
Z R ��!�=

Y
k�0K(Hn(Y ; R); n);

unique up to homotopy with the property that:(i) � is a R-module homomorphism(ii) The composition
Y � Z0(Y )
R ��!Y

k�0K(Hn(Y ; R); n)
classi�es the identity element in H�(Y ; H�(Y ; R)) �= Hom (H�(Y ; R); H�(Y ; R)).
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Proof. Unless otherwise indicated all homology groups have coe�cients in R.
We �rst prove existence. For each n there exists a map

fn : Y �! K(HnY; n)
which classi�es the identity element Id 2 Hom(HnY;HnY ); i.e., 	Y ([fn]) = Id. Now,
de�ne F : Z0(Y )
R!Qn�0K(Hn(Y ); n) by F =Qn�0 fn, where fn is de�ned as in
(A.8), and note that F satis�es the two conditions of the theorem.
In the level of homotopy groups one has

�n(F ) = �n(fn) : �n(Z0(Y ))! �n(K(Hn(Y ;R); n)) = Hn(Y ;R);
and formula (A.9) shows that �n(f) = 	Y ([fn]) � dY;R = Id � dY;R = dY;R, the Dold-Thomisomorphism itself. It follows that F is a homotopy equivalence.
For uniqueness suppose we are given

Y ,!jY;R Z0(Y )
G
��!�!�

Y
n K(HnY; n)

where � and � are homotopy equivalences with properties (i) and (ii) above. These proper-ties imply that ��j is homotopic to ��j. Since � and � are R-module homomorphsims andsince jY;R generates Z0(Y )
R as an R-module, this implies that � = � � jY is homotopic
to � = � � jY . �

References
[A] M. F. Atiyah, K-theory and Reality, Quart. J. Math. Oxford (2),17 (1966), 367-386.

[BLLMM] Boyer, C. P., H.B. Lawson, Jr, P. Lima-Filho, B. Mann, and M.-L. Michelson, Algebraiccycles and in�nite loop spaces, Inventiones Math. , 113 (1993), 373-388.
[CW] Costenoble, S. R. and S. Waner, Fixed Set Systems of Equivariant In�nite Loop Spaces,Trans. Amer. Math. Soc. 326 no. 2 (1991), 485-505.
[DT] Dold, A. and R. Thom, Quasifaserungen und unendliche symmetrische produkte, Ann.of Math. (2) 67 (1956), 230-281.
[dS] Dos Santos, P. Algebraic cycles on real varieties and Z2-equivariant homotopy theory,Ph.D. Thesis, Stony Brook, 1999.
[D] Dugger, D. A Postnikov tower for algebraic K-theory, Ph.D. Thesis, M.I.T., 1999.

[FM] Friedlander, E. and B. Mazur, Filtrations on the homology of algebraic varieties, Memoireof the A. M. S., no 529, 1994.
[FL1] Friedlander, E. and H.B. Lawson, Jr., A theory of algebraic cocycles, Annals of Math.,136 (1992), 361-428.

42



[FL2] Friedlander, E. and H.B. Lawson, Jr., Duality relating spaces of algebraic cocycles andcycles, Topology 36 no.2 (1997), 533-565.
[Fu] Fulton, W., Intersection theory, Springer-Verlag, New York, 1984.

[Lam] Lam T.-K., Spaces of Real Algebraic Cycles and Homotopy Theory, Ph.D. thesis, SUNY,Stony Brook, 1990.
[L1] Lawson, H.B. Jr, Algebraic cycles and homotopy theory, Ann. of Math. 129 (1989),253-291.
[L2] Lawson, H.B. Jr, Spaces of algebraic cycles, pp 137-213 in \Surveys in Di�erential Ge-ometry", vol. 2, 1995, International Press, Boston.

[LLM1] Lawson, H.B. Jr, P.C. Lima-Filho and M.-L. Michelsohn, Algebraic cycles and equivari-ant cohomology theories, Proc. London Math. Soc. (3) 73 (1996), 679-720.
[LLM2] Lawson, H.B. Jr, P.C. Lima-Filho and M.-L. Michelsohn, On equivariant algebraic sus-pension, J. Algebraic Geom. (to appear).
[LLM3] Lawson, H.B. Jr, P.C. Lima-Filho and M.-L. Michelsohn, Algebraic cycles and the clas-sical groups, Part II, Stony Brook Preprint, 1998.
[LM1] Lawson, H.B. Jr. and M.-L. Michelsohn, Algebraic cycles, Bott periodicity, and theChern characteristic map, in The Mathematical Heritage of Hermann Weyl, A.M.S.,Providence, 1988, pp. 241-264.
[LM2] Lawson, H.B. Jr and M.-L. Michelsohn, Algebraic cycles and group actions in Di�erentialGeometry, Longman Press, 1991, pp. 261-278.
[LMS] Lewis, Jr., L. G. and J. P. May and M. Steinberger, Equivariant Stable Homotopy Theory,LNM, vol. 1213, Springer-Verlag, New York, NY, 1986.
[Li1] Lima-Filho, P.C. Lawson homology for quasiprojective varieties, Compositio Math 84(1992), 1-23.
[Li2] Lima-Filho, P.C., Completions and �brations for topological monoids, Trans. Amer.Math. Soc. 340 no. 1 (1993), 127-146.
[Li3] Lima-Filho, P.C., On the generalized cycle map, J. Di�. Geom. 38 (1993), 105-130.
[Li4] Lima-Filho, P.C., On the equivariant homotopy of free abelian groups on G- spaces andG-spectra, Math. Z. 224 (1997), 567-601.
[Li5] Lima-Filho, P.C., On the topological group structure of algebraic cycles, Duke Math. J.75 (1994), no. 2,467{491.
[M1] May, J. P. The geometry of iterated loop spaces, LNM, vol. 271, Springer-Verlag, NewYork, NY, 1972.
[M2] May, J. P., Classifying Spaces and Fibrations, Mem. Amer. Math. Soc. 155, 1975.
[M3] May, J. P., E1-ring spaces and E1-ring spectra, LNM, vol. 577, Springer-Verlag, NewYork, 1977.

43



[M4] May, J. P., et al. Equivariant homotopy and cohomology theory, CBMS vol. 91, AmericanMathematical Society, 1996.
[MS] Milnor, J. and Stashe�, J. D., Characteristic Classes, Annals of Math. Studies no. 76,Princeton Univ. Press, 1974.
[Mo1] Mostovoy, J., Spaces of real algebraic cycles on Pn, Russian Math. Surveys 53 (1998),no.1 (319)
[Mo2] Mostovoy, J., Algebraic cycles and anti-holomorphic involutions on projective spaces,UNAM Preprint, 1998.
[Seg] Segal, G. The multiplicative group of classical cohomology, Quart. J. Math. Oxford Ser.(2) 26 (1975), 289{293.

44


