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Abstract
The objective of this note is to establish the Determinant Majorization Formula F(A)

1
N ≥

det(A)
1
n for all operators F determined by an invariant Gårding-Dirichlet polynomial of

degree N on symmetric n× n matrices. Here invariant means under the group O(n), U(n) or
Sp(n) · Sp(1) when the matrices are real symmetric, Hermitian symmetric, or quaternionic
Hermitian symmetric respectively. We also establish this formula for the Lagrangian Monge
Ampère Operator. This greatly expands the applicability of the recent work of Guo-Phong-
Tong and Guo-Phong for differential equations on complex manifolds. It also relates to the
work of Abja-Olive on interior regularity. Further applications to diagonal operators and to
operators depending on the ordered eigenvalues are given. Examples showing the precision
of the results are presented. For the application to Abja-Olive’s work, and other comments in
the paper, we establish some results for Gårding-Dirichlet operators in appendices. One is an
exhaustion lemma for the Gårding cone. Another gives bounds for higher order derivatives,
which result from their elegant expressions as functions of the Gårding eigenvalues. There
is also a discussion of the crucial assumption of the Central Ray Hypothesis.
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1 Introduction

In a recent fundamental paper [10], B. Guo, D. H. Phong, and F. Tong established an apriori
L∞ estimate for the complex Monge-Ampère equation on Kähler manifolds by purely PDE
techniques. Theirmain theorem applied tomany other equations aswell. The basic hypothesis
in the theorem can be established by proving a determinantal majorization inequality for
the operator. In a later paper Guo and Phong proved many further results on Hermitian
manifolds with the same hypothesis [11] (see also [12]). The point of this paper is to prove the
determinantal majorization inequality for every invariant Gårding-Dirichlet operator, which
means that all the results above apply to this very large family of differential equations.
This inequality also appears as a hypothesis in work of S. Abja, S. Dinew and G. Olive [1,
2] on regularity, where there is also a compactness hypothesis which we establish in some
generality. So their results also apply to this same large constellation of equations.

The operators in question can be defined as follows. Let p(λ1, . . . , λn) be a real homo-
geneous polynomial of degree N on R

n which is symmetric in the variables λ1, . . . , λn . We
assume that all the coefficients of p are ≥ 0.

We now define a polynomial operator F : Sym2(Rn) → R, of degree N on symmetric
n × n-matrices, by

F(A) ≡ p(λ1(A), . . . , λn(A)) (1.1)

where λ1(A), . . . , λn(A) are the eigenvalues of A ∈ Sym2(Rn). Note that
p(λ1(A), . . . , λn(A)) only makes sense because the polynomial p(λ1, . . . λn) is symmetric,
i.e., invariant under permutations of the λ j ’s. Since λ(A) = {λ1(A), . . . , λn(A)} is invariant
under the action of O(n) acting by conjugation on Sym2(Rn), F(A) is also O(n)-invariant.
This means that F defines an operator on every riemannian manifold by using the riemannian
hessian [15].

We can do the analogous thing in the complex case. Let AC be a hermitian symmetric
n × n-matrix with eigenvalues λk(AC) for k = 1, . . . , n. Taking p as in the above real case,
we can define

F(AC) ≡ p(λ1(AC), . . . , λn(AC)). (1.2)

This operator in invariant under the unitary group U(n) and makes sense on any Hermitian
complex (or almost complex) manifold by using i∂∂u and the metric.

Similar remarks can be made in the quaternionic case.
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In these cases we shall prove the determinantal majorization inequalities:

F
1
N (A) ≥ F(I )

1
N det(A)

1
n

F
1
N (AC) ≥ F(I )

1
N det C(AC)

1
n

F
1
N (AH) ≥ F(I )

1
N det H(AH)

1
n

(1.3)

where F(I ) > 0. All three follow immediately from Basic Lemma 2.1.
We shall also prove this inequality for the Lagrangian Monge-Ampère operator MLag

which is also defined on any almost complex Hermitian manifold (in particular, on sympletic
manifolds with a Gromov metric). The defining polynomial is unitarily invariant, but the
proof here is different because this polynomial is zero on all traceless Hermitian matrices,
and so it is out of the category of operators considered in (1.3). In Sect. 8 we prove that in
complex dimension n,

MLag(A)
1
2n ≥ det R(A)

1
2n . (1.4)

See [18] for complete details concerning this new operator.
The inequalities (1.3) also hold for polynomials p which are not symmetric but satisfy

the Central Ray Hypothesis in Sect. 2. One just orders the eigenvalues λ1(A) ≤ · · · ≤ λn(A)

and defines F(A) by (1.1). Here F is not necessarily a polynomial. (See Sect. 10.)
Determinant majorization is also established for diagonal operators

p(a11, a22, . . . , ann)

where p satisfies the hypotheses of Basic Lemma 2.1. However, if one drops the Central Ray
Hypothesis, determinant majorization can fail. We show that for examples of this type local
interior regularity can also fail. This is done in Sect. 9.

As mentioned before the family of polynomial operators F for which the determinant
majorization holds is huge. One way to see this is to consider Gårding-Dirichlet (or G-D)
operators on Sym2(Rn), which are invariant. These are homogeneous real polynomials F on
symmetric matrices with F(I ) > 0 such that:

(i) t �→ F(t I + A) has all real roots for every A,
(ii) The Gårding cone � contains {A : A > 0}, where � is defined as the connected

component of Sym2(Rn) − {F = 0} containing the identity I ,
(iii) F is invariant under the action of O(n) by conjugation on Sym2(Rn).

This family contains all elementary symmetric functions, the p-fold sum operator (Exam-
ple 3.3), and many more (see [[16], §5]). The set of these operators is closed under products,
under directional derivatives in Gårding cone directions, and under a certain “composition”
rule (see Sect. 7).

Every such operator F can be expressed, in terms of the eigenvalues λ(A) of A, as
F(A) = p(λ(A)) where p(λ1, . . . , λn) is a symmetric homogeneous polynomial which is
> 0 on R

n
>0. After normalizing by a positive constant, p satisfies the three Assumptions

of the Basic Lemma 2.1. Assumption (1) follows from this positivity, and Assumption (3)
follows from the O(n)-invariance. This polynomial p transfers over directly to the complex
and quaternionic cases by applying it to the eigenvalues of AC or AH, and so (1.3) holds.

Wewant to point out that all the operators considered in this paper are elliptic. In particular
if F is a G-D polynomial operator with Gårding cone �, then a strengthened form of weak
ellipticity, namely 〈∇F, P〉 > 0 for all P > 0, holds in its domain �.
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For the applications to the work of [1, 2] we need an Exhaustion Lemma which is proved
in Appendix C. For the log of G-D polynomials there are elegant higher order estimates
which we thought would be good to include here (Appendix D). An important assumption
in the Basic Lemma is the Central Ray Hypothesis, which is discussed from several points
of view in Appendix E. In a forthcoming article we shall give a comprehensive introduction
to G-D operators and Gårding theory. However, in this paper the focus in centered on the
following Basic Lemma 2.1.

We want to express our gratitude to Guillaume Olive for his careful reading of and helpful
remarks on the first version of this paper.

2 The Basic Lemma–majorization of the determinant

Let p (�≡ 0) be a real homogeneous polynomial of degree N onR
n , and set e ≡ (1, 1, . . . , 1) ∈

R
n . We write

p(x) =
∑

α

aα1···αn x
α1
1 · · · xαn

n =
∑

|α|=N

aαx
α.

Assumptions

(1) All coefficients aα ≥ 0.
(2) (Normalization)

p(e) =
∑

α

aα = 1.

(3) The crucial Central Ray Hypothesis:

De p = ke for k > 0,

i.e.,

∂ p

∂x1
(e) = · · · = ∂ p

∂xn
(e) = k > 0.

Note that

∂ p

∂x j
(x) =

∑

α

aαα j x
α1
1 · · · xα j−1

j · · · xαn
n (2.1)

so that

∂ p

∂x j
(e) =

∑

α

aα α j , for each j = 1, . . . , n. (2.2)

Therefore, (3) can be restated as
(3)′ The Central Ray Hypothesis:

∑

|α|=N

aαα j = k for each j = 1, . . . , n with k > 0.

It turns out that the following lemma goes back to a paper of Leonid Gurvits [13] in
combinatorics.
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BASIC LEMMA 2.1 For all x1 > 0, . . . , xn > 0,

p(x)
1
N ≥ (x1 · · · xn) 1

n .

Proof We first note that:

1

N
log p(x) = 1

N
log

⎧
⎨

⎩
∑

|α|=N

aαx
α

⎫
⎬

⎭

≥ 1

N

∑

|α|=N

aα log(x
α) by concavity of log, and (1) and (2)

= 1

N

∑

|α|=N

aα{α1 log x1 + · · · + αn log xn}

= 1

N

n∑

j=1

⎧
⎨

⎩
∑

|α|=N

aαα j log x j

⎫
⎬

⎭ = k

N

n∑

j=1

log x j by (3)’

= k

N
log (x1 · · · xn).

The value of k is determined by Euler’s Formula

〈Dx p, x〉 = Np(x),

followed by assumptions (3) and then (2), yielding

〈De p, e〉 = 〈ke, e〉 = kn = Np(e) = N ,

i.e.,

k = N

n
.

Substituting 1/n for k/N in the inequality above, we have

1

N
log p(x) ≥ 1

n
log (x1 · · · xn).

��

Corollary 2.2 Let p(λ) = p(λ1, . . . , λn) �≡ 0 be a symmetric homogeneous (real) polynomial
of degree N all of whose coefficients are ≥ 0. Normalize p so that p(1, . . . , 1) = 1. Then

p(λ1, . . . , λn)
1
N ≥ (λ1 · · · λn) 1

n (2.3)

for all λ ∈ R
n
>0.

Proof We need to prove the Central Ray Hypothesis, that all the ∂ p
∂λ j

(e) agree (and equal k).
This follows from the invariance under permutations. Then, as noted above, k = N/n > 0.

��

This corollary can be restated on the space Sym2(Rn) of second derivatives.
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Theorem 2.3 Let F be a homogeneous polynomial of degree N on Sym2(Rn) given by

F(A) ≡ p(λ1, . . . , λn) (2.4)

where p is as in the Corollary 2.2 and λ1, . . . , λn are the eigenvalues of A. Note that F is
normalized so that F(I ) = 1. Then for all A ≥ 0.

F(A)
1
N ≥ (det A)

1
n . (2.5)

Note 2.4 If we drop the normalization Assumption (2) on p, and then replace p(x) by
p(x)/p(e) which satisfies (2), we have for all A ≥ 0 that

F(A)
1
N ≥ γ (det A)

1
n , where γ ≡ F(I )

1
N = p(e)

1
N . (2.6)

Wewill applyTheorem2.3 to real symmetric, complexHermitian symmetric, quaternionic
Hermitian symmetric matrices A, and also the 2×2 octonian Hermitian symmetric matrices.

3 Gårding-Dirichlet polynomial operators

Let F : Sym2(Rn) → R be a real homogeneous polynomial of degree N which is Gårding
hyperbolic with respect to the Identity I . This mean that for each A ∈ Sym2(Rn), the
polynomial t �→ F(t I + A) has all real roots. The Gårding cone � of F is the connected
component of Sym2(Rn)−{F = 0}which contains I . This is an open convex cone with 0 as
the vertex. and for all directions B ∈ �, F is B-hyperbolic, which means that the polynomial
t �→ F(t B+A) has all real roots for every A ∈ Sym2(Rn).We always assume that F(I ) > 0.
For complete details, see [8, 16, 17].

Definition 3.1 We assume a positivity hypothesis: � ⊃ {A : A > 0}. This defines aGårding-
Dirichlet polynomial, and applying this to the second derivative D2u of functions u in R

n

gives a Gårding-Dirichlet (or G-D) operator. We shall always discuss a G-D operator in
terms of the G-D polynomial that defines it. So the terms “operator” and “polynomial” will
be used interchangeably here.

These operators have a form of strict ellipticity on the Gårding cone �:

F(A + P) > F(A) for all A ∈ � and P > 0. (3.1)

Recall that F
1
N is concave in � (see [8] or (D.2) below), which implies

F(A + P)
1
N ≥ F(A)

1
N + F(P)

1
N for all A ∈ � and P > 0. (3.2)

Combining this with (2.5) gives a stronger form of (3.1):

F(A + P)
1
N − F(A)

1
N ≥ (det P)

1
n for all A ∈ � and P > 0. (3.3)

where F(I ) = 1. Letting A → 0 in (3.3) yields (2.5), so (3.3) and (2.5) are equivalent [2].
Basic G-D operators include the elementary symmetric functions σk(A) (or Hessian

operators). Two new ones are the p-fold sum operator (3.5) below, and the Lagrangian
Monge-Ampère operator mentioned above (see [16] for these and many others including for
example the δ-uniformly elliptic operators Qδ(A) = ∏

j (λ j (A) + δtrλ(A))).

We also have the following construction.
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Proposition 3.2 Let F be a G-D operator of degree N. Then for any P > 0 the operator

δP F(A) ≡ d

dt
F(t P + A)

∣∣∣∣
t=0

= 〈(∇F)A, P〉

is a G-D operator of degree N − 1.

Proof The zeros of ϕ′(t) interlace the N real zeros of ϕ(t) ≡ F(t P+ A), so δP F is Gårding.
This also implies that theGårding cones satisfy�δP F ⊃ �F (see [8]), and�F ⊃ {A : A > 0},
so δP F satisfies positivity. ��

This construction can be iterated. For aG-Doperator F , let F(t I+A) = ∏N
j=1(t+λF

j (A))

where λF
j (A) are called the eigenvalues of F with respect to I . Then differentiating this

product at t = 0 and applying Proposition 3.2 yields that

1

k!δ
k
I F(A) = σN−k(λ

F
1 (A), . . . , λF

N (A)) (3.4)

for k = 0, 1, . . . , N areG-Dpolynomials, whereσ j is the j th elementary symmetric function.
It follows that the elementary symmetric functions of λF

1 (A), . . . , λF
N (A) are polynomials in

A.
The next example was introduced in [14], along with p-geometry/p-potential theory.

Example 3.3 (The p-Fold Sum Operator) Let

F(A) =
∏

|J |=p

λJ (A) (3.5)

where

λJ (A) = λ j1(A) + · · · + λ jp (A) where j1 < · · · < jp and degree = N =
(
n

p

)
.

(The inequality (2.5) for this example was first proven in [7].)

We shall see in §7 that the family of invariant G-D polynomials is huge! Concerning
ellipticity.

Proposition 3.4 A completeG-D operator F has uniformly elliptic linearization at each point
of its Gårding cone �. That is, at A ∈ �

B �→ 〈(∇F)A, B〉 has coefficient matrix (∇F)A > 0.

Proof This is Proposition B.1 in Appendix B. ��

Note that the uniform ellipticity (∇F)A > 0 is stronger than 〈(∇F)A, P〉 > 0, ∀ P > 0
mentioned earlier, and it requires the completeness hypothesis. Completeness means that
all the variables in R

n are needed to define F . This rules out operators such as F(D2u) =
∂2u/∂x21 (n ≥ 2). The invariant operators in the next section are always complete.
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4 Invariant G-D operators

We shall be concerned principally with three cases.
Case 1 (Real Invariant G-D Operators) A G-D polynomial F on Sym2(Rn) of degree N

is real invariant if

F(A) = F(gAgt ) for all g ∈ O(n).

Every such polynomial canonically determines an operator on every riemannian manifold.
By Theorem 4.1 below, F is real invariant if and only if

F(A) = p(λ1(A), . . . , λn(A))

where p is a homogeneous symmetric polynomial of degree N in the eigenvalues of A. This
polynomial p(λ1, . . . , λn) on R

n satisfies the Assumptions (1) and (3) of the Basic Lemma
2.1, and p(e) = F(I ) > 0.
Case 2 (Complex Invariant G-D Operators) Let Sym2

C
(Cn) be the space of Hermitian sym-

metric n × n-matrices on C
n . A (real-valued) G-D polynomial F on Sym2

C
(Cn) of degree N

is complex invariant if

F(AC) = F(gACg
t ) for all g ∈ U(n).

Every such polynomial F canonically determines an operator on everyHermitian complex
(or almost complex) manifold.

By Theorem 4.1 below, F is complex invariant if and only if

F(AC) = p(λ1(AC), . . . , λn(AC))

where p is a homogeneous symmetric polynomial of degree N in the eigenvalues of AC. This
polynomial p(λ1, . . . , λn) on R

n satisfies the Assumptions (1) and (3) of the Basic Lemma
2.1, and p(e) = F(I ) > 0.

This case can be looked at from the real point of view. LetCn = (R2n, J ). Then Sym2
C
(Cn)

can be identified with the subset of A ∈ Sym2(R2n) satisfying AJ = J A. There is a
projection (·)C : Sym2(R2n) → Sym2

C
(Cn) given by setting

AC = 1

2
(A − J AJ )

The real eigenvalues of AC are the eigenvalues of AC viewed as a Hermitian symmetric
matrix, but where each eigenvalue now appears twice.
Case 3 (Quaternionic Invariant G-D Operators) Here we take the real point of view. Let
H

n = (R4n, I , J , K ) where I , J , K are complex structures satisfying the usual relations.
(Thus H

n can be viewed as a right quaternion vector space with scalars α +β I + γ J + δK .)
Then Sym2

H
(Hn), the space of quaternionic Hermitian symmetric n × n-matrices, can be

considered as the subset of A ∈ Sym2(R4n) which commute with I , J and K .
There is a projection (·)H : Sym2(R4n) → Sym2

H
(Hn) given by setting

AH = 1

4
(A − I AI − J AJ − K AK ).

Using the natural inner product on Sym2(R4n), this map from A to AH is orthogonal pro-
jection. Considering AH ∈ Sym2

H
(Hn) as an element of Sym2(R4n), it has a canonical form

under the conjugate action of O(4n), namely

AH = λ1PW1 + · · · + λs PWs (4.1)
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withλ1 < λ2 < · · · < λs andR
4n = W1⊕· · ·⊕Ws an orthogonal decomposition, comprising

the distinct eigenvlaues and corresponding eigenspaces. Here PW denotes orthogonal projec-
tion onto the real subspace W ⊂ R

4n . Moreover, if v is an eigenvector of AH ∈ Sym2(R4n)

with eigenvalue λ, then v I , v J , vK are also eigenvectors with the same eigenvalue λ. (Here
vQ means right multiplication by the quaternion q .) That is,

each eigenspace Wj is a right quaternion vector subspace ofHn . (4.2)

Taken together, (4.1) and (4.2) provide the canonical form for AH ∈ Sym2
H
(Hn) under the

conjugate action of Sp(n) · Sp(1) ≡ Sp(n) ×Z2 Sp(1). (Note that this canonical form could
also be expressed using the eigenvalues λ0j (AH), j = 1, . . . , n, listed to multiplicity.)

A homogeneous real-valued polynomial F on Sym2
H
(Hn) is G-D if t �→ F(t I + AH) has

all real roots for every AH ∈ Sym2
H
(Hn).

Let F be a real homogeneous polynomial F on Sym2
H
(Hn) of degree N . Then F is

quaternionic invariant if

F(AH) = F(gAHg
t ) for all g ∈ Sp(n) · Sp(1).

Every such polynomial canonically determines an operator on every manifold with a topo-
logical H-structure and a compatible metric, in particular a hyperKähler manifold with a
Calabi-Yau metric.

By Theorem 4.1 below, a G-D polynomial F of degree N on Sym2
H
(Hn) is quaternionic

invariant if and only if

F(AH) = p(λ01(AH), . . . , λ0n(AH)) (4.3)

where p is a homogeneous symmetric polynomial of degree N , and λ0j (AH) are the eigen-
values of AH listed to multiplicity. This polynomial p(λ1, . . . , λn) on R

n satisfies the
Assumptions (1) and (3) of the Basic Lemma 2.1, and p(e) = F(I ) > 0.

Theorem 4.1 Let F(A) be a real invariant G-D polynomial of degree N on Sym2(Rn). Then

F(A) = p(λ1(A), . . . , λn(A))

where p(λ1, . . . , λn) is a symmetric homogeneous polynomial of degree N on R
n which

satisfies Assumptions (1) and (3) of Lemma 2.1 and for which p(e) > 0. Furthermore, p is
G-D, that is p is Gårding hyperbolic w.r.t. e and the set {λ ∈ R

n : λ j > 0 ∀ j} is contained
in its Gårding cone �(p).

Conversely, if F is given this way for such a p, then F is a real invariant G-D operator.
The analogous statements hold in the complex and quaternionic cases.

Before the proof we make several remarks.

Remark 4.2 It is important to note in the three determinant cases:

(1) det RA, A ∈ Sym2
R
(Rn), (2) det CAC, A ∈ Sym2

R
(Cn),

or (3) det HAH, A ∈ Sym2
R
(Hn),

that F is a G-D polynomial with Gårding I -eigenvalues given by

(1) λ(A) = {λ1(A), . . . , , λn(A)}, (2) λ(A) = {λ1(AC), . . . , , λn(AC)},
or (3) λ(A) = {λ1(AH), . . . , , λn(AH)}, respectively,

defined in each case by the appropriate canonical form.
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Remark 4.3 The fact that F(A) ≡ det HAH ≡ λ1(AH) · · · λn(AH) is a polynomial in A ∈
Sym2

R
(Hn) (or equivalently a polynomial in AH ∈ Sym2

H
(Hn) ⊂ Sym2

R
(R4n)) requires

proof. TheMoore determinant provides an algebraic constructionwhich is rather complicated
(see [3].) Some might prefer the following proof.

Lemma 4.4 The determinant det HAH ≡ λ1(AH) · · · λn(AH) is a polynomial in A ∈
Sym2

R
(Hn).

Proof Let H = (R4n, I , J , K ) and let π : Sym2(R4n) → Sym2(R4n) be given by

π(A) = 1

4
(A − I AI − J AJ − K AK ) ≡ AH.

Consider

det(I + t AH) = 1 + �1(A)t + �2(A)t2 + · · · + �4nt
4n

= (1 + σ1(λ)t + σ2(λ)t2 + σ3(λ)t3 + · · · + σn(λ)tn)4

where the λ’s are the n eigenvalues of AH. Now det(I + t AH) is a polynomial in (A, t) so
the �k(A)’s are polynomials in A. We also have

(1 + σ1(λ)t + σ2(λ)t2 + σ3(λ)t3 + · · · )(1 + σ1(λ)t + σ2(λ)t2 + σ3(λ)t3 + · · · )·
· (1 + σ1(λ)t + σ2(λ)t2 + σ3(λ)t3 + · · · )(1 + σ1(λ)t + σ2(λ)t2 + σ3(λ)t3 + · · · )
= 1 + 4σ1(λ)t + [4σ2(λ) + 6σ 2

1 (λ)]t2 + [4σ3(λ) + · · · ]t3 + [4σ4(λ) + · · · ]t4 + · · ·
= 1 + �1(A)t + �2(A)t2 + �3(A)t3 + �4(A)t4 + · · ·

Now
4σ1(λ) = �1(A) is a polynomial in A. Therefore
4σ2(λ) + 6σ 2

1 (λ) = �2(A) is a polynomial in A. Hence σ2(λ) is a polynomial in A.
In general 4σk(λ) + a polynomial in A = �k(A) and so σk(λ) is a polynomial in A. ��
A polynomial p(λ) which satisfies all the conditions in Theorem 4.1 is defined (Def. 7.3)

to be a universal G-D polynomial.
Theorem 4.1 is generalized in Theorem 7.2. There the Gårding I -eigenvalues used in

Theorem 4.1 for one of the three determinants det R, det C, det H are replaced by the Gårding
I -eigenvalues of any G-D operator.

Proof of Theorem 4.1 We begin by restricting F to the subspace D ⊂ Sym2(Rn) of diagonal
matrices. For each λ ∈ R

n , let M(λ) = ∑
i λi ei ◦ ei denote the diagonal matrix with entries

λ1, . . . , λn . Define

p(λ) ≡ F(M(λ)) for λ ∈ R
n .

Then p(λ) is a homogenous polynomial of degree N . The fact that F is invariant under
the orthogonal group implies that p is invariant under permutations of the λ j ’s, i.e., p is a
symmetric polynomial. Now by the conjugation invariance, this polynomial determines F by
the formula F(A) = p(λ1(A), . . . , λn(A)). So now everything is reconstructed in terms of
p. The positivity hypothesis that F > 0 on {A : A > 0} is equivalent to the strict positivity
of p on R

n
>0, since A > 0 ⇐⇒ λ(A) ∈ R

n
>0. Assertion (1) that all the coefficients of p

are ≥ 0, can be proved as follows.
Note that

1

α1! · · · αn !
∂ |α| p

∂xα1
1 · · · ∂xαn

n
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equals the coefficient aα for each multi-index α of length |α| ≡ ∑
k αk = N . To prove that

this αth partial of p is ≥ 0 we use Proposition 3.2.
Since p(λ) = F(λ1e1 ◦ e1 + · · · + λnen ◦ en), the partials of p

∂ p

∂λ j
(λ) = 〈(∇F)M(λ), e j ◦ e j 〉

are equal to the directional derivatives of F in the directions Pj = e j ◦ e j ≥ 0. By Propo-
sition 3.2 we have that 〈(∇F)A, P〉 = (δP F)(A) > 0 for all A ∈ � and P > 0. Hence,
(δP F)(A) ≥ 0 for all A ∈ � and P ≥ 0.

By Proposition 3.2, δP F is also an invariant G-D operator. Therefore, this process can be
repeated N times proving that the N th directional derivatives in directions P1 > 0, . . . , PN >

0 are > 0. Hence, the N th directional derivatives in directions P1 ≥ 0, . . . , PN ≥ 0 are ≥ 0.
Taking these latter Pj ’s to each be in axis directions ek ◦ ek yields the desired result that the
αth partial of p, |α| = N , is ≥ 0. So Assertion (1) is proved.

ForAssumption (3)we use the fact that the gradient De p at e is invariant under permutation
of the λ j ’s since e = (1, . . . , 1) is invariant and so is p. Since Re is the only subspace of R

n

fixed under the permutation group, we have De p = ke for some k ∈ R. However k must be
positive since by Euler’s formula nk = 〈De p, e〉 = Np(e) > 0 as in the proof of Basic
Lemma 2.1.

The arguments for the complex and quaternionic cases are exactly the same. ��

Theorem 4.5 Let F be an invariant G-D operator from one of the three cases above. Let
det(A) denote the complex or quaternionic determinant in the complex and quaternionic
cases. Then

F(A)
1
N ≥ F(I )

1
N det(A)

1
n (4.4)

Proof This follows directly from Theorem 4.1 and Basic Lemma 2.1. ��

5 Relevance to the work of Guo-Phong-Tong and Guo-Phong

One of the principle motivations for this work was the recent paper of B. Guo, D. H. Phong,
and F. Tong [10], which among other things gave a purely PDE proof of the C0-estimate in
Yau’s proof of the Calabi Conjecture. Their main theorem, Theorem 1, has much broader
applicability to operators of complex invariant type (as in Sect. 3 in this paper) on Kähler
manifolds. The main assumption (1.4) in this theorem follows if one can prove the majoriza-
tion of the determinant formula in the cone IntP of positive definite matrices (see [[10],
Lemma 4]). That is exactly what we have done for all complex invariant Gårding-Dirichlet
operators, and, therefore, for all the associated operators on Kähler manifolds.

In a later paper of Guo and Phong [10], a number of important results for operators
on Hermitian manifolds were established. Again the important assumption is established
by the majorization of the determinant formula. Hence, all the results in this paper hold
for every operator on a Hermitian manifold, which is induced by any complex invariant
Gårding-Dirichlet operator.
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6 Interior regularity-work of Abja-Olive

In this section we establish C∞ interior regularity for W 2,p-solutions of complex invariant
G-D operators (in the Euclidean case). This is based on results of Abja-Olive [1].We begin by
showing that the basic assumptions (a) – (f) in [1] are satisfied.As abovewework in eigenvalue
space with a symmetric polynomial p(λ1, . . . , λn)which satisfies the assumptions of Lemma
2.1. Let � denote the connected component of R

n − {p = 0} containing e.

(a) R
n
>0 ⊂ � ⊂ {λ1 + · · · + λn > 0}.

(b) p is a C1 on �̄.
(c) p > 0 on �.
(d) p is positively homogeneous of degree N on �.

(e) p
1
N is concave on �.

(f) p(λ)
1
N ≥ (λ1 · · · λn) 1

n with equality on span(e).

Proof The left hand inclusion of (a) follows from the positivity hypothesis. For the right hand
inclusion, note that � is convex and invariant under permutations of the λ j ’s. Among half
spaces H containing � with the vertex 0 ∈ ∂H , there is only one H0 which is invariant under
permutations. Since R · e is the only invariant line, we have H0 = e⊥ = {λ1 +· · ·+λn ≥ 0}.

Hypothesis (b) is clear since p is a polynomial. Hypothesis (c) follows from the definition
of �. Hypothesis (d) is an assumption. Hypothesis (e) is Theorem 2 in [8] for the initial
polynomial on matrices. This restricts to concavity for diagonal matrices. Hypothesis (f) is
Corollary 2.2.

Now the assumptions of [1] are on matrix space and not on eigenvalue space R
n . One

needs to know that C ⊂ R
n is convex if and only if λ−1(C) is convex (where λ−1(C) =

all matrices whose vector of eigenvalues lies in C). This was proved in [4]. ( See also [[17],
Thm. 8.4] and [AO, Prop. 3.1].) One also needs to know that if C ⊂ R

n is compact, then so
is λ−1(C). However, C × O(n) is compact and λ−1(C) is an image of C × O(n). ��

We can now apply the Main Theorem 1.1 in [1] where everything takes place in C
n and

the authors deal with Hermitian symmetric matrices. Let F be the invariant G-D operator
on C

n given by a homogeneous polynomial p(λ1, . . . , λn) of degree N as above, applied to
the eigenvalues of Hermitian symmetric matrices A, that is, F(A) = p(λ(A)). We now let
� denote the Gårding cone of F , and we fix a domain 
 ⊂ C

n .

Theorem 6.1 Let u ∈ W 2,q
loc (
), q > n max{N − 1, 1}, with D2u(x) ∈ � for a.e. x ∈ 


satisfying

F(D2u) = f a.e. in 


where f > 0 and in C2(
). Then for each domain 
0 ⊂⊂ 
 there exists R > 0 with

‖�u‖L∞(
0) ≤ R.

We now apply this bound on �u. We begin with the following.
(g) (Sets of Uniform Ellipticity) For each R > 0, F is uniformly elliptic in the region

�R =
{
A ∈ � : tr(A) < R and

1

R
< F(A)

}

Now the polynomial F has the property that for A ∈ �,

DAF ∈ �∗ (the “open polar” of �) ⊂ IntP.
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The definition of the open polar �∗ is in Appendix A. One sees easily that an invariant D-G
polynomial satisfies the completeness condition given in Appendix A. Therefore, Propo-
sition B.1 in Appendix B applies to show that DAF ∈ �∗. Since Int P ⊂ �, we have
�∗ ⊂ Int P . Therefore the linearization of F is positive definite on all of �. Assumption (g)
is then a result of the following fact.

(g)′ For all R > 0 the set

�R ≡
⎧
⎨

⎩A ∈ � :
n∑

j=1

λ j (A) ≤ R and
1

R
≤ F(A)

⎫
⎬

⎭ is compact.

Proof From (a) above one easily sees that I ∈ �0. The assertion (g)′ then follows from
Corollary C.3 in Appendix C with c1 = R, c2 = log (1/R) and g = F . ��

The fact that (g) holds in this generality is quite useful, so we state it separately.

Proposition 6.2 For each R > 0, the G-D operator F restricted to the set �R is uniformly
elliptic.

In particular, we have interior regularity for W 2,p solutions (see [1, 5, 20]).

Theorem 6.3 Let F be an invariant complex G-D operator. Under the assumptions of
Theorem 6.1,

f ∈ C∞(
) ⇒ u ∈ C∞(
).

7 On the enormous universe of invariant G-D operators

Let’s fix one of the algebras R, C or H, and for the discussion in this chapter “invariant” will
always mean “real invariant”, “complex invariant” or “quaternionic invariant” accordingly.
The discussion is identical in these three cases.

We begin with the following.

Proposition 7.1 The product of two invariant G-D polynomials is again an invariant G-D
polynomial, with eigenvalue set the union of the F and G eigenvalues.

Proof If

F(t I + A) = F(I )
n∏

k=1

(t + λF
k (A)) and G(t I + A) = G(I )

n∏

k=1

(t + λG
k (A)),

then

F(t I + A)G(t I + A) = F(I )G(I )
n∏

k=1

(t + λF
k (A))

n∏

k=1

(t + λG
k (A)),

and so FG is Gårding hyperbolic w.r.t. I . If F and G are each invariant under a group G
acting on the A’s, so is the product. ��
Proposition 7.2 Let F be an invariant G-D polynomial of degree N. Then the operator

(δI F)(A) ≡ d

dt
F(t I + A)

∣∣∣∣
t=0

= 〈(∇F)A, I 〉 (7.1)

is an invariant G-D polynomial of degree N − 1.
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Proof The invariance of δI F is clear. The rest is Proposition 3.2. ��
We formalize the definition given after Theorem 4.1, which has been taken from [16].

Definition 7.3 A universal G-D polynomial is a homogeneous symmetric polynomial
p(λ1, . . . , λn) which is Gårding hyperbolic w.r.t. e and satisfies Assumptions (1) and (3)
of Basic Lemma 2.1 with p(e) > 0. Note that Assumption (1) implies p > 0 on R

n
>0.

These are exactly the polynomials such that F(A) = p(λF (A)) for invariant G-D
polynomials F (Theorem 4.1).

Consider nowaG-Dpolynomial F of degreeM onSym2(Rn)with I-eigenvaluesλF (A) =
(λF

1 (A), . . . , λF
M (A)). We shall construct a new G-D polynomial by applying a universal

Gårding polynomial p of degree N in M variables to the F-eigenvalues. This is why p is
called universal.

Theorem 7.4 Let p and F be as above. Define

PF (A) ≡ p(λF
1 (A), . . . , λF

M (A)) = p(λF (A))

for A ∈ Sym2(Rn). Then PF is also a G-D polynomial of degree N on Sym2(Rn), with
Gårding eigenvalues

λ
PF
j (A) = � j (λ

F (A)) j = 1, . . . , N , (7.2)

where �1(λ), . . . , �N (λ), are the e-eigenvalues of the G-D polynomial p.
The Gårding cones are related by �PF = (λF )−1(�p).
Furthermore, if F is invariant, so is PF .

Proof We first observe that PF (A) is a polynomial. This is evident if p(λ) = λ1 · · · λM

where PF = F . It then follows for all the elementary symmetric functions σ1, . . . , σM by
Proposition 3.2 and Example3.3. Now by a classical result, p(λ) is a polynomial in the
elementary symmetric functions, and so PF (A) is a polynomial.

Note first that PF (I ) = p(λF (I )) = p(e) > 0. By (2.1) in [8],

p(te + λF ) = p(e)
N∏

j=1

(t + � j (λ
F )).

Now λF (I ) = e since F(t I + I ) = (t + 1)M F(I ). Therefore (2)′ in [8] says that

λF (t I + A) = te + λF (A),

and so

PF (t I + A) = p(λF (t I + A))

= p(te + λF (A))

= p(e)
N∏

j=1

(t + � j (λ
F (A)).

Therefore, � j (λ
F (A)), j = 1, . . . , N , are the Gårding I -eigenvalues of PF . The statement

about Gårding cones follows from (7.2). The invariance statement follows fromTheorem 4.1.
��

Many basic invariant G-D polynomials are given in [16, 17]. Taking these and using
Propositions 7.2, 7.3, and 7.4 successively in long chains show that the set of invariant G-D
polynomials operators is very large.
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8 Determinant majorization for the LagrangianMonge-Ampère
operator

The Lagrangian Monge-Ampère Operator is a U(n)-invariant G-D operator on C
n which is

dependent on the Skew part and independent of the traceless Hermitian symmetric part of
a matrix A. Its pointwise linearizations are elliptic. For a compete discussion, including its
importance for a lagrangian potential theory and its geometrical interpretation, one should
see [18], where the operator was introduced. Note that by its U(n)-invariance this operator
is defined on any (almost) complex Hermitian manifold.

For the algebra pertaining to this equation, we shall be working on C
n = (R2n, J ). The

operator is defined on the U(n)-invariant subspace RI ⊕ HermSkew(Cn) ⊂ Sym2
R
(R2n)

where HermSkew(Cn) = {A : J A = −AJ }. It is zero on the space of traceless Hermitian
symmetric matrices (those traceless A with J A = AJ ). Therefore we can assume that this
part of A is zero. If Ae = λe and A is skew Hermitian, then A(Je) = −λJe. Hence, we can
let ±λ1, . . . ,±λn denote the eigenvalues of the skew part Askew ≡ 1

2 (A + J AJ ). Then

A = t I + Askew

with eigenvlaues

t ± λ1, . . . , t ± λn and tr(A) = 2nt .

Thus we have

det(A) =
n∏

j=1

(t + λ j )(t − λ j ).

With μ ≡ 1
2 tr(A) = nt the operator is defined in [18] by

F(A) =
∏

2n±
(μ ± λ1 ± λ2 ± · · · ± λn) =

∏

2n±
(nt ± λ1 ± λ2 ± · · · ± λn)

=
∏

2n±
(e±

1 + · · · + e±
n ) where e±

j = t ± λ j .

The eigenvalues of A are e+
j ande−

j for j = 1, . . . , n, so

det(A) = e+
1 e

−
1 · · · e+

n e
−
n

Proposition 8.1 In the region where A > 0,

F(A)
1
2n ≥ det(A)

1
2n

Proof Positivity implies that e±
j > 0 for all j . Hence, for all 2n−1 choices of ± we have

log(e±
1 + · · · + e+

j + · · · + e±
n ) + log(e±

1 + · · · + e−
j + · · · + e±

n ) ≥ log(e+
j ) + log(e−

j ).

Summing over all 2n−1 choices gives

1

2n−1

∑

2n−1±

{
log(e±

1 + · · · + e+
j + · · · + e±

n ) + log(e±
1 + · · · + e−

j + · · · + e±
n )

}

= 1

2n−1

∑

2n±

{
log(e±

1 + · · · + e±
j + · · · + e±

n )

}
= 1

2n−1 log F(A)

≥ log(e+
j ) + log(e−

j ).
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Summing over j = 1, . . . , n gives

n

2n−1 log F(A) ≥
n∑

j=1

{
log(e+

j ) + log(e−
j )
} = log(det(A))

��

9 Being a Gårding-Dirichlet operator is not enough for determinant
majorization

It is not true that the determinant majorization inequality holds for all G-D polynomials. The
Central Ray Hypothesis is crucial. For a counterexample we take F : Sym2(R2) → R to be
the cubic polynomial

F(A) ≡ a211a22.

The polynomial F is I -hyperbolic with Gårading eigenvalues λF
1 (A) = λF

2 (A) = a11 and
λF
3 (A) = a22 since

F(t I + A) = (t + a11)
2(t + a22).

The Gårding cone � equals {A : a11 > 0 and a22 > 0}, and since its closure � contains P ,
this proves that F is a G-D operator.

Suppose now that A > 0 is diagonal, so that, a12 = 0. Then

F(A)
1
3

det(A)
1
2

=
(
a11
a22

) 1
6

� γ for any γ > 0.

Of course the Central Ray Hypothesis is not satisfied by the diagonal operator F(a11, 0, a22),
so the Basic Lemma 2.1 does not apply.

We note that since F is a G-D operator, the inhomogeneous Dirichlet problem

F(D2u) =
(

∂2u

∂x2

)2 (
∂2u

∂ y2

)
= f (x, y),

∂2u

∂x2
,

∂2u

∂ y2
≥ 0, u

∣∣
∂


= ϕ,

with f ∈ C(
), f ≥ 0, and ϕ ∈ C(∂
), can be uniquely solved on domains 
 ⊂⊂ R
2 with

smooth strictly convex boundaries (see [19]).
This simple example extends to a family where the determinant majorization fails.
Consider the diagonal G-D operator

F(A) ≡ aN−1
11 · 1

n
(a22 + · · · + an+1,n+1),

with N ≥ 3, n ≥ 1, on R × R
n with coordinates (t, x). The Gårding cone � equals {a11 > 0

and a22 + · · · + an+1,n+1 > 0}. Restricting to diagonal A > 0 and fixing a22, . . . , an+1,n+1,
one has

F(A)
1
N

(det A)
1

n+1

= a
1− 1

N − 1
n+1

11 C with C > 0.

Since 1 − 1
N − 1

n+1 ≥ 1 − 1
3 − 1

2 = 1
6 > 0, there is no lower bound for the left-hand term

on A > 0, i.e., determinant majorization fails.
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Although, again by [19], the continuous inhomogeneous Dirichlet Problem can be solved
as above.

When n ≥ 2, there exists a solution to F(D2u) = k > 0 which is 2
N -Hölder continuous

but no better. Note that the domain of the operator F is the space of u.s.c. functions u(t, x)
which are convex in t and � subharmonic in x .

Lemma 9.1 (n ≥ 2). The singular Pogorelov function u(t, x) ≡ g(t)|x | 2
N , where g satisfies

g′′(t)N−1g(t) = 1, g(0) = 1, g′(0) = 0, is a viscosity solution to

F(D2u) ≡ uN−1
t t

1

n
�xu = k ≡ 2

nN

(
n − 2 + 2

N

)
> 0. (9.1)

Outline of Proof First, if x �= 0, then using ∂
∂x j

|x | = x j
|x | one directly computes that

1
n�x |x | 2

N = 2
nN (n − 2 + 2/N )|x | 2

N −2. Hence,

F(D2u) = g′′(t)N−1g(t)
1

n
�x |x | 2

N = k.

Second, use the smooth approximations

uε(t, x) ≡ g(t)(|x |2 + ε)
1
N (9.2)

which decrease to u as ε ↘ 0.
A similar direct calculation yields

F(D2uε) =
(

2

nN

)
C |x |2 + εn

|x |2 + ε
, with C ≡ n − 2 + 2

N
. (9.3)

Note that k = 2
nN C and that

C |x |2 + εn

|x |2 + ε
− C = ε(n − C)

|x |2 + ε
, with n − C ≡ 2 − 2

N
≥ 1.

Hence, each uε is a subsolution of F(D2u) = k, proving that the decreasing limit u is also
a subsolution.

Finally, with ε > 0 sufficiently small, one can show that there exist ηε > 0 with ηε → 0
and F(D2(uε − ηε

1
2 |x |2)) ≤ k if uε − ηε

1
2 |x |2 is admissible at x , i.e., �xuε − ηε ≥ 0. That

is, uε − ηε
1
2 |x |2 is a supersolution of the equation F(D2u) = k. As ε → 0, this converges

uniformly to u. So u is also supersolution and therefore a viscosity solution. ��

10 Other applications of the Basic Lemma

There are other families of polynomial operators on Sym2(Rn), besides those discussed
above, to which the Basic Lemma 2.1 does apply.

Throughout this section we assume that p(x) is a polynomial satisfying the Hypotheses
of Basic Lemma 2.1 and that E ⊂ Sym2(Rn) is a closed R

n≥0-monotone set containing R
n≥0.

We also assume the pair p, E satisfies

p(x + y) ≥ p(x) ∀ x ∈ E and y ∈ R
n≥0. (10.1)

Since p has coefficients ≥ 0 (Assumption (1)), p always satisfies (10.1) if we set E ≡ R
n≥0.
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FAMILY 1 (Diagonal Operators) Let F be a homogeneous polynomial of degree N on
Sym2(Rn) such that

F(A) = p(a11, a22, . . . , ann) if (a11, . . . , ann) ∈ E .

where p satisfies the conditions of Basic Lemma 2.1. Then F satisfies

F(A)
1
N ≥ det(A)

1
n for all A > 0. (10.2)

Note that F with domain restricted to {A ∈ Sym2(Rn) : (a11, . . . , ann) ∈ E} is an elliptic
operator by (10.1).

Proof By the Basic Lemma 2.1, F(A)
1
N ≥ (a11a22 · · · ann) 1

n for A > 0, and for A > 0 we
have that a11a22 · · · ann ≥ det(A). This last (well known) inequality is proved as follows.
Take the Cholesky decomposition A = LLt where L is lower triangular. Then det A =
(det L)(det Lt ) = (det L)2 = α2

1 · · · α2
n where α1, . . . , αn are the diagonal entries of L . In

terms of row vectors we write L as

L =
⎛

⎜⎝
w1
...

wn

⎞

⎟⎠ where

w1 = (α1, 0, 0, . . . , 0)

w2 = (∗, α2, 0, . . . , 0)

...

wn = (∗, ∗, . . . , ∗, αn).

Hence,

A =

⎛

⎜⎜⎜⎜⎝

|w1|2
|w2|2 ∗

∗
|wn |2

⎞

⎟⎟⎟⎟⎠

and the diagonal entries are a11 · · · ann = |w1|2|w2|2 · · · |wn |2 ≥ α2
1 · · · α2

n . ��
FAMILY 2 (Ordered Eigenvalue Operators) Let p(λ1, . . . , λn) satisfy the assumptions

of Basic Lemma 2.1, and for any A ∈ Sym2(Rn) set

F(A) ≡ p(λ1(A), . . . , λn(A)) where λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A).

Then F satisfies (10.2). (Note that these operators F are continuous but generally not
polynomials.)

There are many non-symmetric polynomials satisfying these assumptions.

Lemma 10.1 Supoose q(y1, . . . , yn) and r(z1, . . . , zm) both satisfy the hypotheses of Basic
Lemma 2.1, with the same value of k in Assumption (3), then so also does the polynomial

p(x1, . . . , xn+m) ≡ q(x1, . . . , xn) r(xn+1, . . . , xn+m).

Proof Note that p(1, 1, . . . , 1) = q(1, . . . , 1) r(1, . . . , 1) = 1. Also we have

∂ p

∂x j
(1, . . . , 1) =

{
∂q
∂x j

(1, . . . , 1) r(1, . . . , 1) = k if 1 ≤ j ≤ n

q(1, . . . , 1) ∂r
∂x j

(1, . . . , 1) = k if n + 1 ≤ j ≤ n + m.

It is clear that the coefficients of p are all ≥ 0.
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Lemma 10.2 Supoose q(y1, . . . , yn) and r(z1, . . . , zm) both satisfy the hypotheses of Basic
Lemma 2.1 and have the same degree. Let k and k′ be the constants in Assumption (3) for q
and r respectively. Then the polynomial

p(λ1, . . . , λn+m) ≡ k′

k + k′ q(λ1, . . . , λn) + k

k + k′ r(λn+1, . . . , λn+m).

also satisfies the hypotheses of Basic Lemma 2.1.

Proof We clearly have that p is homogeneous, and p(1, . . . , 1) = 1. If j ≤ n,

∂ p

∂x j
(1, . . . , 1) = k′

k + k′
∂q

∂x j
(1, . . . , 1) = k′k

k + k′ ,

and if j ≥ n + 1, then

∂ p

∂x j
(1, . . . , 1) = k

k + k′
∂r

∂x j
(1, . . . , 1) = k′k

k + k′ .

Again it is clear that the coefficients of p are all ≥ 0. ��
Example 10.3 The polynomials Pj (x) = 1

j {x j
1 + · · · + x j

j } for j ≥ 1 each satisfy the
hypotheses of Basic Lemma 2.1, with the same value k = 1 in Assumption (3). Hence
Lemma 10.1 can be applied to any two of these, and in fact to any finite number taken from
this set. Consider the simplest case.

For A ∈ Sym2(R3) with eigenvalues λ1(A) ≤ λ2(A) ≤ λ3(A), and p(λ) ≡
P1(λ1)P2(λ2, λ3)

F(A) = P1(λ1(A))P2(λ2(A), λ3(A)) = λ1(A)
1

2
{λ2(A)2 + λ3(A)2}.

The connected component of the set {A : F(A) > 0} containing I is IntP ≡ {A : A > 0}.
On this set F > 0, and F = 0 on ∂P . The eigenvalues λ2(A), λ3(A) are positive and
λ2(A)2 + λ3(A)2 ≥ 2λ1(A)2 on this set. Here the determinant majorization is clear.

Appendix A: The interior of the polar cone

Here we describe some useful criteria for determining when a vector is in the interior of
the polar of a convex cone. We start with a non-empty open convex cone � ⊂ V in a finite
dimensional real vector space V . The polar

�0 ≡ {y ∈ V ∗ : 〈y, x〉 ≥ 0 ∀ x ∈ �}
is a non-empty closed convex cone. As such it has interior when considered as a cone in its
vector space span S ⊂ V ∗. We denote this relative interior by �∗ and shall refer to it as the
open polar, keeping in mind that it is an open convex cone in its span S, which may be have
lower dimension than that of V . The orthogonal complement E ≡ S⊥ is called the edge of
�. It is characterized as the linear subspace of � which contains all the lines (through the

origin) in �. Note that if � is self-polar (i.e., �0 = �
0 = �), then �∗ = �. In particular,

(IntP)∗ = IntP .
The simple 2-dimensional example � ≡ {x ∈ R

2 : x1 > 0, x2 > 0}, where E = {0} and
�∗ = � (self-polar), is a counterexample to the statement:

For y ∈ S : 〈y, x〉 > 0 ∀ x ∈ � �⇒ y ∈ �∗,

123



  153 Page 20 of 28 F. Reese Harvey, H. Blaine Lawson

(take y = (1, 0).) However, various strengthenings of this display provide useful criteria for
y to belong to the open polar �∗.

Lemma A.1 (The Open Polar Criteria). Suppose y ∈ S. The following are equivalent.

(1) y ∈ �∗.
(2) ∃ ε > 0 such that 〈y, x〉 ≥ ε|x | ∀ x ∈ � ∩ S.
(3) 〈y, x〉 > 0 ∀ x ∈ � − E.
(4) 〈y, x〉 > 0 ∀ x ∈ (∂� − {0}) ∩ S.
(5) 〈y, x〉 > 0 ∀ x ∈ � ∩ S, x �= 0.

Proof (1) ⇐⇒ (2): Note that:

y ∈ �∗ ⇐⇒ there exist an ε − ball Bε(y) ⊂ �0 about y

⇐⇒ ∃ε > 0 such that 〈y + εz, x〉 ≥ 0 ∀ |z| ≤ 1, x ∈ �

⇐⇒ (a):∃ ε > 0 such that 〈y, x〉 ≥ ε〈z, x〉 ∀ |z| ≤ 1, x ∈ �.

Taking z = x/|x | in (a) yields (2), while (2) yields (a) since 〈z, x〉 ≤ |x | if |z| ≤ 1.
To see (2)⇒ (3), suppose x ∈ �−E and decompose x into x = a+bwhere a ∈ E, b ∈ S.

Then b ∈ � ∩ S and b �= 0, so 〈y, x〉 = 〈b, x〉 > 0, which proves (3).
That (3) ⇒ (4) is obvious.
Since � is convex, it is easy to see that (4) ⇒ (5).
To see (5) ⇒ (2): We can assume that E = {0} and S = V . Obviously, (5) ⇒ y ∈ �0.

Hence,

ε ≡ inf
x∈�,|x |=1

〈y, x〉 ≥ 0.

Since � ∩ {|x | = 1} is compact, there exists x0 ∈ � ∩ {|x | = 1} with ε = 〈y, x0〉. Now (5)
⇒ ε > 0. Hence, 〈y, x

|x | 〉 ≥ ε ∀ x ∈ � − {0}, or 〈y, x〉 ≥ ε|x | ∀ x ∈ �. ��

Appendix B: The Gårding gradient map

Let F be a G-D polynomial of degree N on Sym2(Rn), and let � be its Gårding cone. We
fix A ∈ � and write (by Elementary Property (3) in [16])

F(A + t B) = F(A)

N∏

j=1

(1 + tλF,A
j (B))

where λ
F,A
j (B) are the F-eigenvalues of B ∈ Sym2(Rn) with respect to A ∈ �. Hence,

d

dt
log F(A + t B)

∣∣∣∣
t=0

=
N∑

j=0

λ
F,A
j (B) = 1

F(A)
〈(∇F)A, B〉 (B.1)

We shall assume that F is complete which means that all the variables in R
n are needed to

define theG-Doperator F . There aremany useful equivalentways of describing completeness
(see sect. 3 of [18] for a full discussion of completeness). We point out that an invariant G-D
operator is complete.

Here we are using the notation (∇F)A ≡ DAF .
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Proposition B.1 A completeG-Doperator F has uniformly elliptic linearization at each point
of its Gårding cone �. That is, at A ∈ �

B �→ 〈(∇F)A, B〉 has coefficient matrix (∇F)A > 0.

Proof We use (3) in Proposition 3.5 in [18] saying that completeness is equivalent to

P ∩ E = {0}. (B.2)

Note that

B > 0 ⇐⇒ 〈B, P〉 > 0 ∀P ∈ P − {0}. (B.3)

Now (B.1) for the derivative of F says that for A ∈ � and P ∈ IntP ⊂ �

〈(∇F)A, P〉 = F(A)

N∑

j=1

λ
F,A
j (P).

Now F(A) > 0 and λ
F,A
j (P) ≥ 0 for all P ≥ 0 since P ⊂ �. Hence, 〈(∇F)A, P〉 ≥ 0, and

= 0 ⇐⇒ λ
F,A
1 (P) = · · · = λ

F,A
N (P) = 0, but λ

F,A
1 (P) = · · · = λ

F,A
N (P) = 0 ⇐⇒

P ∈ E . Since P ≥ 0 and P ∈ E the completeness hypothesis (B.2) implies P = 0. Applying
(B.3) we have (∇F)A > 0. ��

Appendix C: The exhaustion Lemma

Again we take the general point of view. Let � ⊂ V be the Gårding cone for a Gårding poly-
nomial g on a finite dimensional vector space V . It is useful to construct convex exhaustion
functionsψ(x) for�, that is, functionsψ ∈ C∞(�)which are convex and all the prelevel sets
Kc ≡ {x ∈ � : ψ(x) ≤ c} are compact. Now ψ(x) ≡ − log g(x) ∈ C∞(�) is convex and
extends to a continuous function on � which is equal to +∞ on ∂�. However, the associated
sets Kc = {x ∈ � : g(x) ≥ e−c} are not compact. For example, when the dimension n = 1,
if g(x) = x, � = (0,∞) ⊂ V ≡ R, these prelevel sets are not compact. Modifying − log x
by adding the linear function γ x with γ > 0 a constant, yields an exhaustion function ψ for
�.

There is a caveat here. This scenario given above, of adding a linear function to log g does
not work if � has an edge E . Recall from Appendix A that E is the largest linear subspace
contained in �. For an extreme example, take the Laplacian g(A) = tr(A) on Sym2(Rn)

where � is the half-space {tr(A) ≥ 0} and E = {tr(A) = 0}. If we divide by the edge,
we fall onto the example above and the argument does work there. In general, the proposed
compactness argument holds only after dividing by the edge, or equivalently, restricting to
the span S = E⊥. We elect to restrict � to the span S since this conforms with the common
choice for the complex Monge-Ampère operator, where S = Sym2

C
(Cn) is the Hermitian

symmetric matrices.

Definition C.1 The convex cone � ⊂ V is called regular if the edge of � is {0}.
The Exhaustion Theorem C.2 Suppose g is a Gårding polynomial on V of degree N with
Gårding cone �. Fix y ∈ �∗, the (relatively) open polar. First, assume �is regular. Then
the function ψ(x) ≡ 〈y, x〉 − log g(x)is a strictly convex exhaustion function for �, so the
prelevel sets

Kc ≡ {x ∈ � : 〈y, x〉 − log g(x) ≤ c}, for c ∈ R
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are compact.
If� is not regular, then restrictingψ to the span S ≡ E⊥ gives a strictly convex exhaustion

function for the regular cone �S ≡ � ∩ S. Hence, the prelevel sets

Kc ≡ {x ∈ � ∩ S : 〈y, x〉 − log g(x) ≤ c}, for c ∈ R

are compact subsets of �S = � ∩ S.

Proof It suffices to prove the theorem when � is regular, since otherwise g
∣∣
S has regular

Gårding cone �S = � ∩ S with the same open polar �∗
S = �∗.

Recall that − log g(x) has second derivative at a point x ∈ � given by

{
D2
x (− log g)

}
(ξ, ξ) =

N∑

j=1

(
λ
g,x
j (ξ)

)2

for all ξ ∈ V , where the Gårding eigenvalues are taken with respect to the direction x ∈ �.
By Gårding [8] (or see [17]), the nullity set

{ξ ∈ V : λ
g,x
1 (ξ) + · · · + λ

g,x
N (ξ) = 0}

equals the edge E . Hence, the function − log g(x) is strictly convex on S + E⊥, and so
ψ(x) ≡ 〈y, x〉 − log g(x) has the same property since 〈y, x〉 is affine.

Notice that since g ≡ 0 on ∂� and 〈y, x〉 is finite, the function ψ ≡ +∞ on ∂�. We
conclude that Kc is a closed subset of �.

It remains to show that Kc is bounded. For this we use the full hypothesis that y belongs to

the open polar �∗ of �, which equals the interior of �
0
. By Lemma A.1 (2) this is equivalent

to the statement
(2) ∃ ε > 0 such that 〈y, x〉 ≥ ε|x | ∀ x ∈ �.

This implies that:

Kc ⊂ {x ∈ � : eε|x | ≤ ecg(x)} ⊂
{
x ∈ � : (ε|x |)N+1

(N + 1)! ≤ ecg(x)

}

=
{
x ∈ � : |x | ≤ (N + 1)!ec

εN+1 g

(
x

|x |
)}

⊂ BR(0)

with

R ≡ (N + 1)!ec
εN+1 sup

ξ∈�,|ξ |=1

g(ξ) < ∞.

��

Corollary C.3 For constants c1, c2 ∈ R and y ∈ �∗, the set

Kc1,c2 ≡ {x ∈ � : 〈y, x〉 ≤ c1 and log g(x) ≥ c2}
is compact.

Proof One has Kc1,c2 ⊂ Kc1−c2 . ��
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Appendix D: The Güler derivative estimates for G-D operators

Suppose F is a Gårding-Dirichlet operator on Sym2(Rn) of degree N with Gårding cone �.
(We assume F �≡ 0, and recall that by definition � is open.) For each A ∈ � there is a simple
formula for the kth derivative of L ≡ log F at A in terms of the Gårding eigenvalues λ

F,A
j

of F w.r.t. the direction A.
In this section we shall abbreviate λ

F,A
j to λA

j or just λ j .

Theorem D.1 (Derivatives). At a point A ∈ � and ∀ B ∈ Sym2(Rn):

(1)

〈DAF, B〉 = F(A)

N∑

j=1

λA
j (B) and

〈DAF, B〉 ≥ 0 ∀ B ∈ �, with equality ⇐⇒ B ∈ E .

(2)

D2
A(log F)(B, B) = −

N∑

j=1

(λA
j (B))2 and

the quadratic form D2
A(log F) ≤ 0 with null space E .

(3)

D3
A(log F)(B, B, B) = 2

N∑

j=1

(λA
j (B))3

(4)

D(k)
A (log F)(B, . . . , B) = (−1)k−1(k − 1)!

N∑

j=1

(λA
j (B))k ∀ k ≥ 1

In particular,

(1)′ The directional derivative of F at A is strictly increasing in all directions B in the closed
Gårding cone �, other than the edge directions where it is zero.

(2)′ The restriction of L = log F to the span S is a strictly concave operator on �S ≡ S∩�.

Proof For A ∈ � and B ∈ Sym2(Rn), let ϕ(t) ≡ log F(A + t B). Then

F(A + t B) = F(A)

N∏

j=1

(1 + tλA
j (B)).

(See for example [8] or the Elementary Property (3) in [16].)
Since ϕ(t) = log F(A) +∑N

j=1 log (1 + tλA
j ), we have (with λ j ≡ λA

j ) that

ϕ′(t) =
N∑

j=1

λ j

1 + tλ j
, ϕ′′(t) = −

N∑

j=1

λ2j

(1 + tλ j )2
,
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and for k ≥ 2,

ϕ(k)(t) = (−1)k−1(k − 1)!
N∑

j=1

λkj

(1 + tλ j )k
.

Since ϕ(k)(0) = {D(k)
A (log F)}(B, . . . , B) this proves all the equalities in (1), (2), (3) and

(4). The remainder of the theorem follows from the fact that for all B ∈ �, the eigenvalues
λA
1 (B), . . . , λA

N (B) are all ≥ 0 with equality iff B ∈ E , that is , the nullity {B : λA
1 (B) =

· · · λA
N (B) = 0} equals the edge E (see [8, 16]).

Now with λ j ≡ λA
j (B) ≡ λ

F,A
j (B) and λ ≡ (λ1, . . . , λN ) ∈ R

N , the little �k-norm of λ

is

‖λ‖k ≡
⎛

⎝
N∑

j=1

‖λ j‖k
⎞

⎠

1
k

for k ≥ 1 and ‖λ‖∞ = sup
1≤ j≤N

|λ j |.

Recall that

‖λ‖k ≤ ‖λ‖� for � = 1, 2, . . . , k − 1 with equality iffλ is an axis vector. (D.1)

To see this we can assume that λ �= 0. By homogeneity one can assume ‖λ‖� = 1, and
therefore 0 ≤ |λ j | ≤ 1 for all j . Then � < k implies

∑ |λ j |k ≤ ∑ |λ j |� = 1. Hence,
‖λ‖k ≤ 1 = ‖λ‖� with equality if and only if λ is a unit axis vector.

This translates into an upper bound estimate for the kth derivative by lower order
derivatives.

Theorem D.2 (Güler [9]). For A ∈ �, B ∈ Sym2(Rn) and k fixed, if � = 2, 4, . . . is even
and � ≤ k, then

∣∣∣∣
1

(k − 1)!
{
D(k)

A log F
}

(B, . . . , B)

∣∣∣∣

1
k ≤

[
1

(� − 1)!
{
D(�)

A log F
}

(B, . . . , B)

] 1
�

Proof Note that for k = 1, 3, . . . odd,

∣∣∣∣
1

(k − 1)!
{
D(k)

A log F
}

(B, . . . , B)

∣∣∣∣ =
∣∣∣∣∣∣

N∑

j=1

λkj

∣∣∣∣∣∣
≤

N∑

j=1

|λ j |k = ‖λ‖kk,

and for k = 2, 4, . . . even

1

(k − 1)!
{
D(k)

A log F
}

(B, . . . , B) = ‖λ‖kk .

Hence, in both cases, ‖λ‖k ≤ ‖λ‖� for � = 1, . . . , k − 1 yields the estimates for the kth
derivative of log F . ��

For equality to hold in Theorem D.2, B must either be in the edge E or have exactly one
non-zero A-eigenvalue.
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Further discussion–second derivative formulas

The above first and second derivative formulas for log F at A ∈ �, namely

(1) 〈DA log F, B〉 =
N∑

j=1

λ j and (2) (D2
A log F)(B, B) = −

N∑

j=1

λ2j

for all B ∈ Sym2(Rn) can be used to conclude interesting formulas for the second derivatives

of F and F
1
N . Here we abbeiviate λ

F,A
j (B) to just λ j or λ j (B), and we recall the discriminant

polynomial

Discr(λ1, . . . , λN ) =
∑

i< j

(λi − λ j )
2.

Proposition D.3

(D.1) (D2
A log F)(B, B) = −|λ(B)|2

(D.2) (D2
AF)(B, B) = 2F(A)σ2(λ(B))

(D.3) (DAF
1
N )(B, B) = − 1

N2 F(A)
1
N Discr(λ(B))

Moreover, the quadratic forms D2
A log F and D2

AF have the same null space, namely
N ≡ {B : λ1(B) = · · · = λN (B) = 0}. The nullity N is the same as the edge E ≡ � ∩ (−�)

and also the linearity of F which is, by definition, the largest linear subspace onwhich F = 0.
Modulo this subspace, D2

A log F < 0, while D2
AF has Lorentzian signature with future light

cone �. Fiinally, the quadratic form Discr(λ(B)) ≥ 0 with null space {B ∈ Sym2(Rn) :
λ1(B) = · · · = λN (B)} = E + R · A of dimension = dim(E) + 1.

Note that (D.3) proves the Gårding Lemma that F
1
N is concave.

Proof of (D.2) By (1) and (2) above,

−
N∑

j=1

λ2j = D2
A log F = DA

(
DAF

F(A)

)
= D2

A(F)

F(A)

= −DAF ◦ DAF

F(A)2
= D2

AF

F(A)
−
⎛

⎝
N∑

j=1

λ j

⎞

⎠
2

.

Note that (
∑

j λ j )
2 −∑

j λ
2
j = 2σ2(λ). ��

Sketch of proof of (D.3) Use the standard formula (obtained by expanding out the right hand
term)

N |λ(B)|2 − σ1(λ(B))2 = Descr(λ(B)) ≡
∑

i< j

(λi (B) − λ j (B))2

to compute that

(D2
AF

1
N )(B, B) = − 1

N 2 F
1
N (A)

{
Descr(λA(B))

}
.
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Appendix E: The central ray hypothesis

Suppose F is a G-D operator on Sym2(Rn) of degree N with Gårding cone �. (We assume
F �≡ 0 and by definition � is open and contains {A : A > 0}.)

The next lemma shows that there exists a unique rayR contained in the Gårding cone �,
with the property that � is, in a certain sense, symmetrical about R.

Lemma E.1

F(A)
1
N ≤

[
sup

B∈�,‖B‖=1

F(B)
1
N

]
‖A‖ for all A ∈ � − E . (E.1)

This sup is attained at a unique maximum point B0 which belongs to �S ≡ � ∩ S where
S is the span. Equivalently, equality occurs at a point A ∈ � ⇐⇒ A ∈ R ≡ R

+ · B0, the
ray through B0.

Definition E.2 This unique ray R for (F, �) is called the central ray.

Proof Suppose B0 is a maximum point. First, B0 ∈ � since F vanishes on ∂�. Secondly,
B0 ∈ S. If not, then writing B0 = BE + BS with respect to the orthogonal decomposition
Sym2(Rn) = E ⊕ S, we have BE �= 0. Therefore, ‖BS‖ < ‖B0‖ = 1, and hence

F

(
BS

‖BS‖
) 1

N = 1

‖BS‖ F(BS)
1
N = 1

‖BS‖ F(B0)
1
N > F(B0)

1
N .

which contradicts that B0 is a maximum point.
For the remainder of the proof, we can restrict to the span S = E⊥, and we set γ ≡

supB∈�,‖B‖=1 F(B)
1
N .

The tangent affine hyperplane H ≡ {A : 〈B0, A〉 = 1} separates the level sets {F(B)
1
N =

γ } and {‖B‖ = 1} since F 1
N is strictly concave, and ‖B‖ is strictly convex on S. Furthermore,

B0 is the only point of intersection of these hypersurfaces, since H touches each of these
hypersurfaces only at the point B0.

If the sup in (E.1) is attained at a point A we may assume ‖A‖ = 1 by dividing the
inequality by ‖A‖. Now we must have A = B0 since all other points on the unit sphere are

strictly below the hypersurface F
1
N = γ ��

Corollary E.3 There is a unique point A0, up to positive multiples, where the sphere and the

level set of F
1
N have a common normal.

Proof Let A0 be a point where there is a common normal. We can renormalize so that
‖A0‖ = 1, since everything is of degree 1. Let H0 be the tangent hyperplane to the sphere
at A0. Then as in the proof of the theorem above H0 strictly separates the sphere and the

hypersurface F(A)
1
N = F(A0)

1
N away from A0; and the value of F

1
N at all points �= A0 in the

sphere are < F(A0)
1
N . Thus if A0 �= B0 we would have F(A0)

1
N > F(B0)

1
N > F(A0)

1
N . ��

Corollary E.4 The central ray R is characterized by the fact that for any non-zero point
B ∈ R, DB F and DB‖A‖2 = 2B are positively proportional, i.e.,

DB F = kB

with B ∈ �S = S ∩ � and k > 0.
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We now examine conditions which imply that the central ray is R+ I .

Proposition E.5 If F is invariant under O(n), SU(m) with n = 2m, Spm with n = 4m, or any
other subgroup of O(n) whose only fixed line in Sym2(Rn) is the one through the identity I ,
then the central ray R is the ray through I .

Proof If F is invariant under a subgroup G ⊂ O(n), then G fixes the central ray. ��
Definition E.6 TheCentral RayHypothesis (CRH) is that: The identity I generates the central
ray R of (�, F).

There are several important ways of formulating the CRH, which we now describe.

Definition E.7 The Gårding (or F-) Laplacian, denoted �F , is defined by

�F (B) ≡
N∑

j=1

λ
F,I
j (B) ≡ trF (B).

Note that, after normalizing F(I ) = 1,

�F (B) = d

dt

∣∣∣∣
t=0

F(I + t B) = 1

(N − 1)!
d(N−1)

dt (N−1)

∣∣∣∣
t=0

F(t I + B)

= σ F
1 (B) = 〈DI log F, B〉.

Theorem E.8 (Equivalent Formulations of the CRH). The following conditions are equiva-
lent.

(1)

F(A)
1
N ≤

[
sup

‖B‖2=n,B∈�

F(B)
1
N

]
‖A‖ ∀ A ∈ �

with equality iff A = t I , t > 0.

(2) DI log F = 1
F(I ) DI F = k I , for k > 0.

(3) �F = k�standard, for k > 0.
(4) F(A)

1
N ≤ F(I )

1
N k

N 〈I , A〉 ∀ A ∈ � with equality iff A ∈ t I + E

for t > 0. The k, n, N are related by kn = N.

Proof We have already shown that (1) ⇐⇒ (2). Now (2) ⇐⇒ (3) since �F (B) =
〈DI log F, B〉 implies that �F = k�standard ⇐⇒ DI log F = k I . Statement (4) says that

F
1
N (A) is bounded above by c〈I , A〉 with equality at t I + E, t > 0. Thus the derivative of

F
1
N at I is a multiple of I which is equivalent to (3). ��
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