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Abstract
The objective of this note is to establish the Determinant Majorization Formula F (A)% >

det(A)% for all operators F determined by an invariant Garding-Dirichlet polynomial of
degree N on symmetric n x n matrices. Here invariant means under the group O(n), U(n) or
Sp(n) - Sp(1) when the matrices are real symmetric, Hermitian symmetric, or quaternionic
Hermitian symmetric respectively. We also establish this formula for the Lagrangian Monge
Ampere Operator. This greatly expands the applicability of the recent work of Guo-Phong-
Tong and Guo-Phong for differential equations on complex manifolds. It also relates to the
work of Abja-Olive on interior regularity. Further applications to diagonal operators and to
operators depending on the ordered eigenvalues are given. Examples showing the precision
of the results are presented. For the application to Abja-Olive’s work, and other comments in
the paper, we establish some results for Garding-Dirichlet operators in appendices. One is an
exhaustion lemma for the Garding cone. Another gives bounds for higher order derivatives,
which result from their elegant expressions as functions of the Garding eigenvalues. There
is also a discussion of the crucial assumption of the Central Ray Hypothesis.

Contents

Introduction . . . . . ... L
The Basic Lemma-majorization of the determinant . . . . . . .. ... ... ... ... .......
Garding-Dirichlet polynomial operators . . . . . . . . . .. ... ..
Invariant G-D operators . . . . . . . . .. e e e
Relevance to the work of Guo-Phong-Tong and Guo-Phong . . . . . . .. ... ... ... ......
Interior regularity-work of Abja-Olive . . . . . .. ... ... . ...

AN RN =

Communicated by Sun-Yung Alice Chang, Ph.D.

Second author was partially supported by the Simons Foundation.

B H. Blaine Lawson Jr.
blaine @math.sunysb.edu

F. Reese Harvey
harvey @rice.edu

1 Rice University, Houston, TX, USA
2 Stony Brook University, Stony Brook, NY, USA

Published online: 15 May 2023 9\ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-023-02485-8&domain=pdf
http://orcid.org/0000-0003-0467-5999

153 Page20of28 F. Reese Harvey, H. Blaine Lawson

7  On the enormous universe of invariant G-D operators . . . . . . . . ... ... ... ... .. ...
8 Determinant majorization for the Lagrangian Monge-Ampere operator . . . . . . . . . . . ... ...
9 Being a Garding-Dirichlet operator is not enough for determinant majorization . . .. ... ... ..
10 Other applications of the BasicLemma . . . . . . . . . ... ... ..
Appendix A: The interior of the polarcone . . . . . . . . . . ... L
Appendix B: The Garding gradient map . . . . . . . . .. ... e e
Appendix C: The exhaustion Lemma . . . . . . . . ... ... L
Appendix D: The Giiler derivative estimates for G-D operators . . . . .. . ... ... ... .......

Further discussion—second derivative formulas . . . . . . .. ... ... o0 L0 L0 L
Appendix E: The central ray hypothesis . . . . . . .. ... .. . .. L
References . . . . . . . . o e

1 Introduction

In a recent fundamental paper [10], B. Guo, D. H. Phong, and F. Tong established an apriori
L estimate for the complex Monge-Ampere equation on Kéhler manifolds by purely PDE
techniques. Their main theorem applied to many other equations as well. The basic hypothesis
in the theorem can be established by proving a determinantal majorization inequality for
the operator. In a later paper Guo and Phong proved many further results on Hermitian
manifolds with the same hypothesis [11] (see also [12]). The point of this paper is to prove the
determinantal majorization inequality for every invariant Garding-Dirichlet operator, which
means that all the results above apply to this very large family of differential equations.
This inequality also appears as a hypothesis in work of S. Abja, S. Dinew and G. Olive [1,
2] on regularity, where there is also a compactness hypothesis which we establish in some
generality. So their results also apply to this same large constellation of equations.

The operators in question can be defined as follows. Let p(Aq, ..., A,) be a real homo-
geneous polynomial of degree N on R” which is symmetric in the variables Ay, ..., A,. We
assume that all the coefficients of p are > 0.

We now define a polynomial operator F : Sym?(R") — R, of degree N on symmetric
n x n-matrices, by

F(A) = p(Li(A), ..., A (A)) (1.1)

where Aj(A),...,A,(A) are the eigenvalues of A € Sym2 (R™). Note that
p(X1(A), ..., A, (A)) only makes sense because the polynomial p(r1, ... X,) is symmetric,
i.e., invariant under permutations of the A ;’s. Since A(A) = {A;(A), ..., A, (A)} is invariant
under the action of O(n) acting by conjugation on Sym2 (R™), F(A) is also O(n)-invariant.
This means that F defines an operator on every riemannian manifold by using the riemannian
hessian [15].

We can do the analogous thing in the complex case. Let Ac be a hermitian symmetric
n x n-matrix with eigenvalues Ax(Ac) fork = 1, ..., n. Taking p as in the above real case,
we can define

F(Ac) = p(hi(Ac), - ... ka(AC)). (1.2)

This operator in invariant under the unitary group U(n) and makes sense on any Hermitian
complex (or almost complex) manifold by using i ddu and the metric.
Similar remarks can be made in the quaternionic case.
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In these cases we shall prove the determinantal majorization inequalities:

FN(A) > F()V det(A)7

v

F¥(Ac) > F(I)W detc(Ag)n (1.3)

\%

F¥(Ag) > F(I)¥ dety(Am)n

where F (1) > 0. All three follow immediately from Basic Lemma 2.1.

We shall also prove this inequality for the Lagrangian Monge-Ampére operator My ag
which is also defined on any almost complex Hermitian manifold (in particular, on sympletic
manifolds with a Gromov metric). The defining polynomial is unitarily invariant, but the
proof here is different because this polynomial is zero on all traceless Hermitian matrices,
and so it is out of the category of operators considered in (1.3). In Sect. 8 we prove that in
complex dimension #,

Mg (A) 7 > det g (A)%. (1.4)

See [18] for complete details concerning this new operator.

The inequalities (1.3) also hold for polynomials p which are not symmetric but satisfy
the Central Ray Hypothesis in Sect. 2. One just orders the eigenvalues A1 (A) < --- < A, (A)
and defines F'(A) by (1.1). Here F is not necessarily a polynomial. (See Sect. 10.)

Determinant majorization is also established for diagonal operators

plai, axn, ..., anm)

where p satisfies the hypotheses of Basic Lemma 2.1. However, if one drops the Central Ray
Hypothesis, determinant majorization can fail. We show that for examples of this type local
interior regularity can also fail. This is done in Sect. 9.

As mentioned before the family of polynomial operators F for which the determinant
majorization holds is huge. One way to see this is to consider Garding-Dirichlet (or G-D)
operators on Sym?(R"), which are invariant. These are homogeneous real polynomials F on
symmetric matrices with (/) > 0 such that:

(i) t +— F(¢t1 4+ A) has all real roots for every A,
(ii)) The Garding cone T" contains {A : A > 0}, where I' is defined as the connected
component of Sym?(R") — {F = 0} containing the identity 7,
(iii) F is invariant under the action of O(n) by conjugation on Symz(R”).

This family contains all elementary symmetric functions, the p-fold sum operator (Exam-
ple 3.3), and many more (see [[16], §5]). The set of these operators is closed under products,
under directional derivatives in Garding cone directions, and under a certain “composition”
rule (see Sect. 7).

Every such operator F' can be expressed, in terms of the eigenvalues A(A) of A, as
F(A) = p(A(A)) where p(Aq, ..., A,) is a symmetric homogeneous polynomial which is
> 0 on R” . After normalizing by a positive constant, p satisfies the three Assumptions
of the Basic Lemma 2.1. Assumption (1) follows from this positivity, and Assumption (3)
follows from the O(n)-invariance. This polynomial p transfers over directly to the complex
and quaternionic cases by applying it to the eigenvalues of Ac or Ap, and so (1.3) holds.

‘We want to point out that all the operators considered in this paper are elliptic. In particular
if F is a G-D polynomial operator with Garding cone I', then a strengthened form of weak
ellipticity, namely (VF, P) > 0 for all P > 0, holds in its domain I".
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For the applications to the work of [1, 2] we need an Exhaustion Lemma which is proved
in Appendix C. For the log of G-D polynomials there are elegant higher order estimates
which we thought would be good to include here (Appendix D). An important assumption
in the Basic Lemma is the Central Ray Hypothesis, which is discussed from several points
of view in Appendix E. In a forthcoming article we shall give a comprehensive introduction
to G-D operators and Garding theory. However, in this paper the focus in centered on the
following Basic Lemma 2.1.

We want to express our gratitude to Guillaume Olive for his careful reading of and helpful
remarks on the first version of this paper.

2 The Basic Lemma-majorization of the determinant

Let p (s 0) be areal homogeneous polynomial of degree N on R”,andsete = (1, 1,...,1) €
R”". We write
px) = Zaal...anx‘l’“ coexin = Z agx?®.
o la|=N

Assumptions

(1) All coefficients a, > 0.
(2) (Normalization)

ple) = Zaa = 1.

(3) The crucial Central Ray Hypothesis:

D.,p = ke for k>0,

ie.,
ap ap
— o= = k>0.
o1 (e) ox, (e) >
Note that
Bp —1
Wj(x) = Zaa(xjx‘fl -~-x?’ ceexpn 2.1
o
so that
0
Ei(e) = ;aaaj, foreach j =1,...,n. 2.2)

Therefore, (3) can be restated as
(3) The Central Ray Hypothesis:

> agej =k foreach j=1,....n withk > 0.
la|=N

It turns out that the following lemma goes back to a paper of Leonid Gurvits [13] in
combinatorics.
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BASICLEMMA 2.1 Forallx;y >0, ...,x, >0,
POV 2 (1 x)n
Proof We first note that:
1 log p(x) = 1 log Z agx”
N N =N

1
> N Z ay log(x®) by concavity of log, and (1) and (2)
la|=N

1
== > aafen logxi + -+ ay log x,)
le|=N

1 o k o
= NZ Z agajlog xj ¢ = NZIngj by (3)
j=1

j=1 {lal=N
k
= - log (- x).
The value of k is determined by Euler’s Formula
(Dxp» X) = Np(x)7
followed by assumptions (3) and then (2), yielding

(Dep,e) = (ke,e) = kn = Np(e) = N,

N
k= —.
n

Substituting 1/n for k/N in the inequality above, we have

1 1
—log p(x) > —log(xy---x,).
N n

O
Corollary 2.2 Let p(A) = p(A1, ..., Ay) # Q0be asymmetric homogeneous (real) polynomial
of degree N all of whose coefficients are > 0. Normalize p so that p(1,...,1) = 1. Then
1 1
PO, Ag) V= (Ao Ap)n (2.3)

forall A e R,
Proof We need to prove the Central Ray Hypothesis, that all the ;ij (e) agree (and equal k).

This follows from the invariance under permutations. Then, as noted above, k = N/n > 0.
[m}

This corollary can be restated on the space Sym?(R") of second derivatives.
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Theorem 2.3 Let F be a homogeneous polynomial of degree N on Symz(R”) given by
F(A) = p(r1, ... An) 24

where p is as in the Corollary 2.2 and M1, .. ., A, are the eigenvalues of A. Note that F is
normalized so that F(I) = 1. Then for all A > 0.

F(AV > (det A)r. 2.5)

Note 2.4 If we drop the normalization Assumption (2) on p, and then replace p(x) by
p(x)/p(e) which satisfies (2), we have for all A > 0 that

F(A)Y > y(det Ay, wherey = F(I)¥ = p(e)¥. (2.6)

We will apply Theorem 2.3 to real symmetric, complex Hermitian symmetric, quaternionic
Hermitian symmetric matrices A, and also the 2 x 2 octonian Hermitian symmetric matrices.

3 Garding-Dirichlet polynomial operators

Let F : Sym?(R") — R be a real homogeneous polynomial of degree N which is Gdrding
hyperbolic with respect to the Identity I. This mean that for each A € Sym?(R"), the
polynomial # — F(¢tI 4+ A) has all real roots. The Gérding cone I' of F is the connected
component of Sym2 (R™) —{F = 0} which contains /. This is an open convex cone with 0 as
the vertex. and for all directions B € I', F is B-hyperbolic, which means that the polynomial
t > F(tB+ A)hasallreal roots forevery A € Sym2 (R™). We always assume that F (1) > 0.
For complete details, see [8, 16, 17].

Definition 3.1 We assume a positivity hypothesis: T" D {A : A > 0}. This defines a Garding-
Dirichlet polynomial, and applying this to the second derivative D?u of functions u in R”
gives a Garding-Dirichlet (or G-D) operator. We shall always discuss a G-D operator in
terms of the G-D polynomial that defines it. So the terms “operator” and “polynomial” will
be used interchangeably here.

These operators have a form of strict ellipticity on the Garding cone I':

F(A+ P)> F(A) forall AeTl and P > 0. 3.1
Recall that F% is concave in I" (see [8] or (D.2) below), which implies
F(A+ P)¥ > F(A)¥ + F(P)N forall A€l and P > 0. (3.2)
Combining this with (2.5) gives a stronger form of (3.1):
F(A+ P)¥ — F(A)¥ > (det P)7 forall A€l and P > 0. (3.3)

where F(I) = 1. Letting A — 0 in (3.3) yields (2.5), so (3.3) and (2.5) are equivalent [2].

Basic G-D operators include the elementary symmetric functions oy (A) (or Hessian
operators). Two new ones are the p-fold sum operator (3.5) below, and the Lagrangian
Monge-Ampere operator mentioned above (see [16] for these and many others including for
example the §-uniformly elliptic operators Qs(A) = [] j (Aj(A) + 6tra(A))).

We also have the following construction.
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Proposition 3.2 Let F be a G-D operator of degree N. Then for any P > 0 the operator

d
spF(A) = EF([P—#—A) = ((VF)a, P)
t=0

is a G-D operator of degree N — 1.

Proof The zeros of ¢’ (¢) interlace the N real zeros of p(¢) = F(t P+ A), so 8p F is Gérding.
This also implies that the Garding cones satisfy I's, 7 D I'r (see [8]),andI'r D {A : A > 0},
so §p F satisfies positivity. O

This construction can be iterated. For a G-D operator F,let F(t14+A) = ]_[1;/:1 (t+A f (A))

where Af (A) are called the eigenvalues of F with respect to 1. Then differentiating this
product at # = 0 and applying Proposition 3.2 yields that

Ik F F

GO F(A) = oG] (A). .. Af(A) (3.4)
fork =0, 1, ..., N are G-D polynomials, where o is the j th elementary symmetric function.
It follows that the elementary symmetric functions of AIF (A), ..., A If, (A) are polynomials in

A.
The next example was introduced in [14], along with p-geometry/ p-potential theory.

Example 3.3 (The p-Fold Sum Operator) Let

F(A) = ]_[ Ay (A) (3.5)

[J1=p

where

rj(A) = Xj;(A)+---+4;,(A)  where j; <--- < j, and degree = N = (n)
p

(The inequality (2.5) for this example was first proven in [7].)

We shall see in §7 that the family of invariant G-D polynomials is huge! Concerning
ellipticity.

Proposition 3.4 A complete G-D operator F has uniformly elliptic linearization at each point
of its Garding cone I'. That is, at A € T

B +— ((VF)4, B) has coefficient matrix (VF)4 > 0.
Proof This is Proposition B.1 in Appendix B. m}
Note that the uniform ellipticity (VF)4 > 0 is stronger than ((VF)4, P) > 0,VP > 0
mentioned earlier, and it requires the completeness hypothesis. Completeness means that

all the variables in R" are needed to define F. This rules out operators such as F (D?u) =
9%u/ 8x12 (n > 2). The invariant operators in the next section are always complete.

@ Springer



153 Page 80f28 F. Reese Harvey, H. Blaine Lawson

4 Invariant G-D operators

We shall be concerned principally with three cases.
Case 1 (Real Invariant G-D Operators) A G-D polynomial F on Sym?(R") of degree N
is real invariant if

F(A) = F(gAg') forall g € O(n).

Every such polynomial canonically determines an operator on every riemannian manifold.
By Theorem 4.1 below, F is real invariant if and only if

F(A) = pri(A), ..., 2 (A))

where p is a homogeneous symmetric polynomial of degree N in the eigenvalues of A. This
polynomial p(rq, ..., A,) on R” satisfies the Assumptions (1) and (3) of the Basic Lemma
2.1,and p(e) = F(I) > 0.

Case 2 (Complex Invariant G-D Operators) Let Symé((C”) be the space of Hermitian sym-
metric n x n-matrices on C". A (real-valued) G-D polynomial F on Sym% (C") of degree N
is complex invariant if

F(Ac) = F(gAcg') forallg e U®n).

Every such polynomial F canonically determines an operator on every Hermitian complex
(or almost complex) manifold.
By Theorem 4.1 below, F is complex invariant if and only if

F(Ac) = p(hM(AQ), ..., Mi(Ac))

where p is a homogeneous symmetric polynomial of degree N in the eigenvalues of Ac. This
polynomial p(Aq, ..., A,) on R” satisfies the Assumptions (1) and (3) of the Basic Lemma
2.1,and p(e) = F(I) > 0.

This case can be looked at from the real point of view. Let C* = (R?", J). Then Symé (&)
can be identified with the subset of A € Sym?(R?") satisfying AJ = JA. There is a
projection (-)¢ : Sym?(R?*) — Symé (C"™) given by setting

1
Ac = J(A=JAJ)

The real eigenvalues of Ac are the eigenvalues of Ac viewed as a Hermitian symmetric
matrix, but where each eigenvalue now appears twice.

Case 3 (Quaternionic Invariant G-D Operators) Here we take the real point of view. Let
H" = (]R“", 1,J,K) where I, J, K are complex structures satisfying the usual relations.
(Thus H" can be viewed as a right quaternion vector space with scalars « + 81 +yJ +38K.)
Then Symﬁ(H”), the space of quaternionic Hermitian symmetric n X n-matrices, can be
considered as the subset of A € Sym2 (R*") which commute with I, J and K.

There is a projection (-)g : Sym?(R*") — Symﬂz{ (H"™) given by setting

1
Ag = Z(A — 1Al —JAJ — KAK).
Using the natural inner product on Sym?(R*"), this map from A to Ag is orthogonal pro-

jection. Considering Ay € Sym]%I (H™) as an element of Sym2 (R*"), it has a canonical form
under the conjugate action of O(4n), namely

Ag = A Pw, + -+ As Py, “4.1)

@ Springer



Determinant majorization and the work Page9of28 153

withA; < Ay < --- < A;andR™ = W, @- - -®W, an orthogonal decomposition, comprising
the distinct eigenvlaues and corresponding eigenspaces. Here Py denotes orthogonal projec-
tion onto the real subspace W C R**. Moreover, if v is an eigenvector of Ay € Sym?(R*")
with eigenvalue A, then vl, vJ, vK are also eigenvectors with the same eigenvalue A. (Here
vQ means right multiplication by the quaternion ¢.) That is,

each eigenspace W; is a right quaternion vector subspace of H". 4.2)

Taken together, (4.1) and (4.2) provide the canonical form for Ay € Sym%I (H™) under the
conjugate action of Sp(n) - Sp(1) = Sp(n) xz, Sp(1). (Note that this canonical form could
also be expressed using the eigenvalues )L(} (Am), j =1, ..., n,listed to multiplicity.)

A homogeneous real-valued polynomial F on Symﬁﬂ(H") isG-Dift — F(tI + Ag) has
all real roots for every Ay € Syml%]I (H").

Let F be a real homogeneous polynomial F on Symﬁ(H") of degree N. Then F is
quaternionic invariant if

F(Ag) = F(gAgg') forallg € Sp(n)-Sp(l).

Every such polynomial canonically determines an operator on every manifold with a topo-
logical H-structure and a compatible metric, in particular a hyperKéhler manifold with a
Calabi-Yau metric.

By Theorem 4.1 below, a G-D polynomial F of degree N on Sym%I (H") is quaternionic
invariant if and only if

F(Am) = pGI(Ap), ..., &) (Am) 43)
where p is a homogeneous symmetric polynomial of degree N, and A0(Ap) are the eigen-
values of Ap listed to multiplicity. This polynomial p(ij,..., ;) on R” satisfies the

Assumptions (1) and (3) of the Basic Lemma 2.1, and p(e) = F(I) > 0.
Theorem 4.1 Let F(A) be a real invariant G-D polynomial of degree N on Sym2 (R™). Then
F(A) = p(Ai(A), ..., (A))

where p(Ay, ..., \,) is a symmetric homogeneous polynomial of degree N on R" which
satisfies Assumptions (1) and (3) of Lemma 2.1 and for which p(e) > 0. Furthermore, p is
G-D, that is p is Gdrding hyperbolic w.r.t. e and the set {, € R" : A; > 0V j} is contained
in its Garding cone T'(p).
Conversely, if F is given this way for such a p, then F is a real invariant G-D operator.
The analogous statements hold in the complex and quaternionic cases.

Before the proof we make several remarks.
Remark 4.2 1t is important to note in the three determinant cases:

(1) detrA, A € Symi(R"),  (2) detcAc, A € Symi(C"),

or (3) detyAp, A € Symi(H"),
that F is a G-D polynomial with Gérding /-eigenvalues given by

(1 2A) = {M(A), ..., (A}, 2) AMA) = {M(Ac), -+, M(A))
or 3) A(A) = {AM(Am), ..., , An(Am)}, respectively,

defined in each case by the appropriate canonical form.
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Remark 4.3 The fact that F(A) = detgApg = A1(Aq) - - - A, (Ag) is a polynomial in A €
Symﬂé(H") (or equivalently a polynomial in Ay € Sym%ﬂ(H") C Sym]% (R*")) requires
proof. The Moore determinant provides an algebraic construction which is rather complicated
(see [3].) Some might prefer the following proof.

Lemma 4.4 The determinant detgAg = M (Am)---An(Am) is a polynomial in A €
Symﬂzg(H”).

Proof LetH = (R*", I, J, K) and let 7 : Sym?(R**) — Sym?(R*") be given by
1
7(4) = (A=Al —JAJ — KAK) = Ay,

Consider
det(I +tAp) = 1+ (A + Zo(A)> + - + Syut™
(140100t + 0212 + 03008 + - + 0, G

where the A’s are the n eigenvalues of Ay. Now det(/ + tAp) is a polynomial in (A, t) so
the 34 (A)’s are polynomials in A. We also have

(1 + a1 +02()1* + 030087 + - ) (1 + 01 (W1 + 020017 + 0301 + )
(L + o1t + oW+ o3 + ) (1 + o1 (WDt + 022 + 030087 + )
= 1+401(V)t + [402(0) + 607 (W] + [4o3 (M) + -+ 167 + [dog () + -+ 1t* + -+
= 14 DA + Dp(A)? + T3(A) + Sy (At + -

Now
401(A) = £1(A) is a polynomial in A. Therefore
dop(A) + 6012 (X) = 2(A) is a polynomial in A. Hence 07 (X) is a polynomial in A.
In general 40% (1) + a polynomial in A = ¥;(A) and so o (A) is a polynomial in A. O

A polynomial p(A) which satisfies all the conditions in Theorem 4.1 is defined (Def. 7.3)
to be a universal G-D polynomial.

Theorem 4.1 is generalized in Theorem 7.2. There the Garding 7-eigenvalues used in
Theorem 4.1 for one of the three determinants det g, det ¢, det gy are replaced by the Garding
I -eigenvalues of any G-D operator.

Proof of Theorem 4.1 We begin by restricting F to the subspace D C Sym?(R") of diagonal
matrices. For each L € R”, let M()\) = Zi Aie; o e; denote the diagonal matrix with entries
A, ..., Ay Define

p(\) = F(M(A) for A e R",

Then p(X) is a homogenous polynomial of degree N. The fact that F is invariant under
the orthogonal group implies that p is invariant under permutations of the A ;’s, i.e., p is a
symmetric polynomial. Now by the conjugation invariance, this polynomial determines F by
the formula F(A) = p(A1(A), ..., 1, (A)). So now everything is reconstructed in terms of
p. The positivity hypothesis that ¥ > 0 on {A : A > 0} is equivalent to the strict positivity
of ponR? ), since A >0 <= A(A) € RY. Assertion (1) that all the coefficients of p
are > 0, can be proved as follows.
Note that

1 alalp

arlco! 9xyt - xy"
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equals the coefficient a, for each multi-index « of length || = ), ax = N. To prove that
this o' partial of p is > 0 we use Proposition 3.2.
Since p(L) = F(Ajej oe1 + --- + Ayey, 0 €y), the partials of p

ap
T(K) = ((VF)may, ejoej)
Aj

are equal to the directional derivatives of F in the directions P; = e; o e; > 0. By Propo-
sition 3.2 we have that (VF)4, P) = (6pF)(A) > Oforall A € I" and P > 0. Hence,
6pF)(A) >0forall AeT and P > 0.

By Proposition 3.2, §p F is also an invariant G-D operator. Therefore, this process can be
repeated N times proving that the N directional derivatives in directions P, > 0, ..., Py >
0 are > 0. Hence, the N™ directional derivatives in directions P; > 0, ..., Py > 0 are > 0.
Taking these latter P;’s to each be in axis directions ey o ey yields the desired result that the
ah partial of p, |@| = N, is > 0. So Assertion (1) is proved.

For Assumption (3) we use the fact that the gradient D, p at e is invariant under permutation
of the A;’s since e = (1, ..., 1) is invariant and so is p. Since Re is the only subspace of R"
fixed under the permutation group, we have D, p = ke for some k € R. However k must be
positive since by Euler’s formula nk = (D.p,e) = Np(e) > 0 as in the proof of Basic
Lemma 2.1.

The arguments for the complex and quaternionic cases are exactly the same. O

Theorem 4.5 Let F be an invariant G-D operator from one of the three cases above. Let
det(A) denote the complex or quaternionic determinant in the complex and quaternionic
cases. Then

F(AY > F(I)V det(A)7 (4.4)

Proof This follows directly from Theorem 4.1 and Basic Lemma 2.1. O

5 Relevance to the work of Guo-Phong-Tong and Guo-Phong

One of the principle motivations for this work was the recent paper of B. Guo, D. H. Phong,
and . Tong [10], which among other things gave a purely PDE proof of the C%-estimate in
Yau’s proof of the Calabi Conjecture. Their main theorem, Theorem 1, has much broader
applicability to operators of complex invariant type (as in Sect. 3 in this paper) on Kihler
manifolds. The main assumption (1.4) in this theorem follows if one can prove the majoriza-
tion of the determinant formula in the cone Int P of positive definite matrices (see [[10],
Lemma 4]). That is exactly what we have done for all complex invariant Garding-Dirichlet
operators, and, therefore, for all the associated operators on Kihler manifolds.

In a later paper of Guo and Phong [10], a number of important results for operators
on Hermitian manifolds were established. Again the important assumption is established
by the majorization of the determinant formula. Hence, all the results in this paper hold
for every operator on a Hermitian manifold, which is induced by any complex invariant
Garding-Dirichlet operator.
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6 Interior regularity-work of Abja-Olive

In this section we establish C° interior regularity for W?2P_solutions of complex invariant
G-D operators (in the Euclidean case). This is based on results of Abja-Olive [1]. We begin by
showing that the basic assumptions (a) — (f) in [1] are satisfied. As above we work in eigenvalue
space with a symmetric polynomial p(X, ..., A,) which satisfies the assumptions of Lemma
2.1. Let I denote the connected component of R” — {p = 0} containing e.

@Ry cT Cc{rMm+--+21, >0

() pisaClonT.

(c) p>0onT.

(d) p is positively homogeneous of degree N on I'.
(e) p% is concave on I'.

) p(k)ﬁ > (M -~-A,,)% with equality on span(e).

Proof The left hand inclusion of (a) follows from the positivity hypothesis. For the right hand
inclusion, note that I" is convex and invariant under permutations of the A ;’s. Among half
spaces H containing I" with the vertex O € d H, there is only one Hp which is invariant under
permutations. Since R - e is the only invariant line, we have Hy = et = {A+---+1, =0}

Hypothesis (b) is clear since p is a polynomial. Hypothesis (c) follows from the definition
of I'. Hypothesis (d) is an assumption. Hypothesis (e) is Theorem 2 in [8] for the initial
polynomial on matrices. This restricts to concavity for diagonal matrices. Hypothesis (f) is
Corollary 2.2.

Now the assumptions of [1] are on matrix space and not on eigenvalue space R". One
needs to know that C C R” is convex if and only if 2~ 1) is convex (where (e ) =
all matrices whose vector of eigenvalues lies in C). This was proved in [4]. ( See also [[17],
Thm. 8.4] and [AO, Prop. 3.1].) One also needs to know that if C C R" is compact, then so
is A~1(C). However, C x O(n) is compact and A~ 1(C) is an image of C x O(n). O

We can now apply the Main Theorem 1.1 in [1] where everything takes place in C" and
the authors deal with Hermitian symmetric matrices. Let F be the invariant G-D operator
on C" given by a homogeneous polynomial p(A1, ..., A,) of degree N as above, applied to
the eigenvalues of Hermitian symmetric matrices A, that is, F(A) = p(A(A)). We now let
I' denote the Gérding cone of F, and we fix a domain  c C".

Theorem 6.1 Let u € Wli’cq(Q), q > n max{N — 1, 1}, with D2u(x) € I for ae. x € Q
satisfying
F(D*u) = f ae.inQ
where [ > 0 and in C3(Q). Then for each domain Qo CC 2 there exists R > 0 with
lAullLe@y < R.

We now apply this bound on Au. We begin with the following.
(g) (Sets of Uniform Ellipticity) For each R > 0, F is uniformly elliptic in the region

1
' = {AeF:tr(A)<R and E<F(A)}

Now the polynomial F has the property that for A € I,
DA F € T* (the “open polar” of I') C Int P.
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The definition of the open polar I'* is in Appendix A. One sees easily that an invariant D-G
polynomial satisfies the completeness condition given in Appendix A. Therefore, Propo-
sition B.1 in Appendix B applies to show that D4 F € T'*. Since Int P C T', we have
I'* C Int P. Therefore the linearization of F is positive definite on all of I". Assumption (g)
is then a result of the following fact.

(g) Forall R > 0 the set

n
= 1
'k = {Aerl: Ai(A) <R — < F(A i .
R S Z j(A) <R and R = (A) ¢ iscompact
j=1
Proof From (a) above one easily sees that I/ € T 0. The assertion (g)’ then follows from
Corollary C.3 in Appendix C withc; = R, ¢y =log(1/R) and g = F. O
The fact that (g) holds in this generality is quite useful, so we state it separately.

Proposition 6.2 For each R > 0, the G-D operator F restricted to the set T g is uniformly
elliptic.

In particular, we have interior regularity for W2P solutions (see [1, 5, 20]).

Theorem 6.3 Let F be an invariant complex G-D operator. Under the assumptions of
Theorem 6.1,

feC®(Q) = uelC®9Q).

7 On the enormous universe of invariant G-D operators

Let’s fix one of the algebras R, C or H, and for the discussion in this chapter “invariant” will

99 <

always mean “real invariant”, “complex invariant” or “quaternionic invariant” accordingly.
The discussion is identical in these three cases.
We begin with the following.

Proposition 7.1 The product of two invariant G-D polynomials is again an invariant G-D
polynomial, with eigenvalue set the union of the F and G eigenvalues.

Proof If

Ftl+A) = FI)[[¢+1{(4) and GeI+A) = G [ [ +1{ (A)).
k=l k=1

then
F(tI + AG@tl +A) = FIDG) [ [+ 1f () [ [ + 2 (a)).
k=1 k=1

and so FG is Gérding hyperbolic w.r.t. I. If F and G are each invariant under a group g
acting on the A’s, so is the product. O

Proposition 7.2 Let F be an invariant G-D polynomial of degree N. Then the operator

d
61F)(A) = EF(tI—i—A) = (VF)a, I) (7.1)

t=0

is an invariant G-D polynomial of degree N — 1.
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Proof The invariance of §; F is clear. The rest is Proposition 3.2. O
We formalize the definition given after Theorem 4.1, which has been taken from [16].

Definition 7.3 A universal G-D polynomial is a homogeneous symmetric polynomial
p(A1, ..., Ay) which is Garding hyperbolic w.r.t. e and satisfies Assumptions (1) and (3)
of Basic Lemma 2.1 with p(e) > 0. Note that Assumption (1) implies p > 0 on RZ .

These are exactly the polynomials such that F(A) = p(AFf(A)) for invariant G-D
polynomials F (Theorem 4.1).

Consider now a G-D polynomial F of degree M on Sym?(R") with I-eigenvalues A (4) =
(klp (A),..., AL(A)). We shall construct a new G-D polynomial by applying a universal
Gaérding polynomial p of degree N in M variables to the F-eigenvalues. This is why p is
called universal.

Theorem 7.4 Let p and F be as above. Define

Pr(A) = pG{(A),.... Ay (A) = pGl(A)
for A € Sym>(R"). Then P is also a G-D polynomial of degree N on Sym?(R"), with
Garding eigenvalues

fo(A) = APy j=1,...,N, (7.2)

where A1 (M), ..., AN(A), are the e-eigenvalues of the G-D polynomial p.
The Gdrding cones are related by I p, = (! Tp).
Furthermore, if F is invariant, so is Pr.

Proof We first observe that Pr(A) is a polynomial. This is evident if p(A) = A;---Apy
where Pr = F. It then follows for all the elementary symmetric functions o7y, ..., oy by
Proposition 3.2 and Example3.3. Now by a classical result, p(A) is a polynomial in the
elementary symmetric functions, and so Pr(A) is a polynomial.

Note first that Pr(I) = p(AF (1)) = p(e) > 0. By (2.1)in [8],

N
plte+1F) = pe) [+ A,;0.5).
j=1

Now Af(I) = esince F(t1 + 1) = (t + )™ F(I). Therefore (2)' in [8] says that
A+ A) = te+ 17 (A),

and so

pQF I + A))

plte + 1" (A))

Prp(tl + A)

N
= ple) [ [+ A, ).

j=1

Therefore, A j ()LF (A)), j =1,..., N, are the Garding I-eigenvalues of Pr. The statement
about Garding cones follows from (7.2). The invariance statement follows from Theorem 4.1.
[m}

Many basic invariant G-D polynomials are given in [16, 17]. Taking these and using
Propositions 7.2, 7.3, and 7.4 successively in long chains show that the set of invariant G-D
polynomials operators is very large.
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8 Determinant majorization for the Lagrangian Monge-Ampére
operator

The Lagrangian Monge-Ampere Operator is a U(n)-invariant G-D operator on C" which is
dependent on the Skew part and independent of the traceless Hermitian symmetric part of
a matrix A. Its pointwise linearizations are elliptic. For a compete discussion, including its
importance for a lagrangian potential theory and its geometrical interpretation, one should
see [18], where the operator was introduced. Note that by its U(n)-invariance this operator
is defined on any (almost) complex Hermitian manifold.

For the algebra pertaining to this equation, we shall be working on C" = (R?", J). The
operator is defined on the U(n)-invariant subspace RI @ HermS*¥(C") Sym]}%(Rz")

where Herm®*¥ (C") = {A : JA = —AJ}. It is zero on the space of traceless Hermitian
symmetric matrices (those traceless A with JA = AJ). Therefore we can assume that this
part of A is zero. If Ae = Le and A is skew Hermitian, then A(Je) = —AJe. Hence, we can

let £Aq, ..., £A, denote the eigenvalues of the skew part Askew = %(A + JAJ). Then
A = 11+ A%V
with eigenvlaues
tEXr, ..., t A, and tr(A) = 2nt.
Thus we have
n
det(A) = [+ —1)).
j=1
With p = %tr(A) = nt the operator is defined in [18] by

F(A) = H(Mﬂ:}\li)ﬂi”'i)‘n) = H(m‘:l:)»]:f:)»z:f:-“i)&n)
o4 2n4

1_[((3?:4-"'4—63:) where e;!: = l‘:i:)\j.

2n4

+
J

det(A) = ei"el_ . e:{e

The eigenvalues of A are e ande; forj=1,...,n, so
n
Proposition 8.1 In the region where A > 0,
F(A)T > det(A)%
Proof Positivity implies that eji > 0 for all j. Hence, for all 2"~! choices of + we have

log(e} + -+ +ef +---+ep) +loglef +--+e; +---+ey) = log(el) + log(e;).

Summing over all 2"~ ! choices gives

1
= > {log(ef—|—---+e}'+---+e,,i)+log(eli+---+e;+~-~+e,jf)}

on—14
1 + + + 1
= FZ log(e; tote e = FlogF(A)
mt

> log(e;.") + log(e;).
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Summing over j = 1, ..., n gives
n
log F(A) > Z{log(ej) + 1og(e;)} = log(det(A))

on— n—1
j=1

9 Being a Garding-Dirichlet operator is not enough for determinant
majorization

It is not true that the determinant majorization inequality holds for all G-D polynomials. The
Central Ray Hypothesis is crucial. For a counterexample we take F : Sym?(R?) — R to be
the cubic polynomial

F(A) = a11a22

The polynomial F is I-hyperbolic with Géarading eigenvalues Af(A) = Ag(A) = aj] and
kg(A) = app since

F(I4+A) = (t +a)*( + an).

The Garding cone I" equals {A : a11 > 0 and ap; > 0}, and since its closure T contains P,
this proves that F is a G-D operator.
Suppose now that A > 0 is diagonal, so that, a;» = 0. Then

1

F(A)3

( )1 = <a11> # y foranyy >0.
det(A)? axn

Of course the Central Ray Hypothesis is not satisfied by the diagonal operator F (a1, 0, az2),
so the Basic Lemma 2.1 does not apply.
We note that since F is a G-D operator, the inhomogeneous Dirichlet problem

5 02u\> [ 9%u 2u 9u
F(D'u) = (7= 92 = f(x.y), 2 92 >0, ulyg =9,

with f € C(Q), f > 0,and ¢ € C(d), can be uniquely solved on domains @ cC R? with
smooth strictly convex boundaries (see [19]).
This simple example extends to a family where the determinant majorization fails.
Consider the diagonal G-D operator

1
FA) =al™"- S(an+ ).

with N > 3,n > 1, on R x R" with coordinates (¢, x). The Garding cone I" equals {a;; > 0

and az + - - - + an+1,n+1 > 0}. Restricting to diagonal A > 0 and fixing a2, . .., An+1.n+1,
one has
1
F(A)N 1-L-_L
(7)1 =a; " "™C with C>0.
(det A)m
Since 1 — N - m >1—z— % = % > (), there is no lower bound for the left-hand term

on A > 0, i.e., determinant maJorlzation fails.
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Although, again by [19], the continuous inhomogeneous Dirichlet Problem can be solved
as above.

When n > 2, there exists a solution to F (Dzu) =k > 0 which is %—Hélder continuous
but no better. Note that the domain of the operator F is the space of u.s.c. functions u(¢, x)
which are convex in ¢ and A subharmonic in x.

Lemma9.1 (n > 2). The singular Pogorelov function u(t, x) = g(t)|x| %, where g satisfies
g"ONg(r) =1, g(0) =1, ¢ (0) = 0, is a viscosity solution to

F(Dzu)—uN_]lAu—k—i n-2+2) >0 9.1)
-, T T T aN N ’ '
Outline of Proof First, if x # 0, then using 82—/|x| = \% one directly computes that

LA x|¥ = 2 (n — 2+ 2/N)|x|¥ 2. Hence
n—x — nN . ?

1
F(D*u) = g" 0N g =ALlx|¥ = k.
n
Second, use the smooth approximations

uc(t, x) = g (x> + v 9.2)

which decrease to u as € N\ 0.
A similar direct calculation yields

2\ Clx>+en . 2
F(D? =—)—, thC =n—-24+—. 9.3
(D7ue) (nN) fEie . M n—2+ 9.3)
Note that k = %C and that
2 - 2
M_C=M! with n —C = 2— = > 1.
|x|2 4+ € |x]2+€ N

Hence, each u, is a subsolution of F(D?u) = k, proving that the decreasing limit « is also
a subsolution.

Finally, with € > O sufficiently small, one can show that there exist n > 0 with n¢ — 0
and F(D?(ue — ne 31x[%)) < k if ue — ne3|x|? is admissible at x, i.e., Ayue — ne > 0. That
18, ue — 116%|)c|2 is a supersolution of the equation F(D*u) = k. As € — 0, this converges
uniformly to u. So u is also supersolution and therefore a viscosity solution. O

10 Other applications of the Basic Lemma

There are other families of polynomial operators on Sym?(R"), besides those discussed
above, to which the Basic Lemma 2.1 does apply.

Throughout this section we assume that p(x) is a polynomial satisfying the Hypotheses
of Basic Lemma 2.1 and that E C Sym?(R") is a closed RZ ;-monotone set containing RY ;.
We also assume the pair p, E satisfies

p(x +y) > p(x) Vx e EandyeRL,. (10.1)

Since p has coefficients > 0 (Assumption (1)), p always satisfies (10.1) if we set E = R’éo.

@ Springer



153  Page 18 0f 28 F. Reese Harvey, H. Blaine Lawson

FAMILY 1 (Diagonal Operators) Let F be a homogeneous polynomial of degree N on
Sym2 (R™) such that

F(A) = p(ai,axn,...,ay) if (a11,...,a5) € E.
where p satisfies the conditions of Basic Lemma 2.1. Then F satisfies
F(A)V > det(A)s  forall A > 0. (10.2)
Note that F' with domain restricted to {A € Symz(]R”) 1 (ait, .- -, any) € E}isanelliptic

operator by (10.1).

Proof By the Basic Lemma 2.1, F(A)% > (ajjax - - a,m)% for A > 0, and for A > 0 we
have that ajjaz; - - - a,, > det(A). This last (well known) inequality is proved as follows.
Take the Cholesky decomposition A = LL! where L is lower triangular. Then det A =
(det L)(det L") = (det L)% = ozlz e a,% where a1, ..., oy are the diagonal entries of L. In
terms of row vectors we write L as

w; = (1,0,0,...,0)

w1 wy = (%,02,0,...,0)
L = : where
Wy
Wy = Gk,o%, ..., %, 0p).
Hence,
lwy |?
lwa > *
A =
*
|wn|2
: : _ 2 2 2 2 2
and the diagonal entries are ajy - - - dpy = w1 w2 |" - - - [wyl” > of -+ - oy O

FAMILY 2 (Ordered Eigenvalue Operators) Let p(Aq, ..., A,) satisfy the assumptions
of Basic Lemma 2.1, and for any A € Sym?(R") set

F(A) = pi(A), ..., 4 (A))  where 11(A) < A2(A) < --- < An(A).

Then F satisfies (10.2). (Note that these operators F are continuous but generally not
polynomials.)
There are many non-symmetric polynomials satisfying these assumptions.

Lemma 10.1 Supoose q(y1, ..., yn) and r(zy, ..., zm) both satisfy the hypotheses of Basic
Lemma 2.1, with the same value of k in Assumption (3), then so also does the polynomial

PXLs s Xnpm) = (X1 + s Xn) F(Xnds - -+ s Xnm)-
Proof Note that p(1,1,...,1) =q(1,...,Dr(,..., 1) = 1. Also we have

J» | 387”/(1,...,1)r(1,...,1)=k if1<j<n
ﬁ,(""’)_ q(l,...,1)§7’j(1,...,1):k if n+1<j<n+m.

It is clear that the coefficients of p are all > 0.
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Lemma 10.2 Supoose q(y1, ..., yn) and r(zy, ..., zm) both satisfy the hypotheses of Basic
Lemma 2.1 and have the same degree. Let k and k' be the constants in Assumption (3) for q
and r respectively. Then the polynomial

/

k k
P, Apym) = mq(ll, oA+ mr(km,l, ey Angm)-

also satisfies the hypotheses of Basic Lemma 2.1.

Proof We clearly have that p is homogeneous, and p(1,...,1) = 1.If j <n,

ap Y k'k
—,..., 1) = —{,...,1) = ——,
0x; k+ k' dx; k+k
andif j > n + 1, then
op k or k'k
—{,...,1) = ———(1,..., 1) = .
0x; k+k 0x; k+k
Again it is clear that the coefficients of p are all > 0. O

Example 10.3 The polynomials P;(x) = §{x{ + 4 x;} for j > 1 each satisfy the
hypotheses of Basic Lemma 2.1, with the same value k = 1 in Assumption (3). Hence
Lemma 10.1 can be applied to any two of these, and in fact to any finite number taken from
this set. Consider the simplest case.

For A € Sym?(R3) with eigenvalues A{(A) < XA2(A) < A3(A), and p(h) =
Pr(A1) P2(A2, A3)

1
F(A) = Pi(A1(A))P2(A2(A), A3(A)) = M(A)E{?LZ(A)ZJrM(A)Z}-

The connected component of the set {A : F(A) > 0} containing / is IntP = {A : A > 0}.
On this set F > 0, and F = 0 on 9P. The eigenvalues Ay(A), A3(A) are positive and
12(A)2 + A13(A)2 > 21 (A)? on this set. Here the determinant majorization is clear.

Appendix A: The interior of the polar cone

Here we describe some useful criteria for determining when a vector is in the interior of
the polar of a convex cone. We start with a non-empty open convex cone I' C V in a finite
dimensional real vector space V. The polar

M’ = {yev*:(y,x) >0Vx eI}

is a non-empty closed convex cone. As such it has interior when considered as a cone in its
vector space span S C V*. We denote this relative interior by I'* and shall refer to it as the
open polar, keeping in mind that it is an open convex cone in its span S, which may be have
lower dimension than that of V. The orthogonal complement E = S+ is called the edge of
I'. It is characterized as the linear subspace of I which contains all the lines (through the
origin) in I". Note that if Tis self-polar (i.e., o= ﬁ) =T),then ™ =T.In particular,
(Int P)* = Int P.

The simple 2-dimensional example I' = {x € R? : x| > 0, x» > 0}, where E = {0} and
I'* =T (self-polar), is a counterexample to the statement:

For ye §: (y,x) >0 Vxel' = yel*
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(take y = (1, 0).) However, various strengthenings of this display provide useful criteria for
y to belong to the open polar I'*.

Lemma A.1 (The Open Polar Criteria). Suppose y € S. The following are equivalent.

(1) yel™
(2) € > 0 suchthat (y,x)>¢€|x| YVxeI NS.
(3) (y,x) >0 VxeT —E.
(4) (y,x) >0 Vxe @I —{0})NS.
(

(5) (y,x)>0 VxelNS, x #0.
Proof (1) <= (2): Note that:

y € I'* <= thereexistan e — ball B.(y) C I'’ about y
<= de >0suchthat (y +€z,x) >0V|z|] <1,xeT
<= (a):3€ > Osuch that (y,x) > €(z,x) V|z|] <1,x eT.

Taking z = x/|x| in (a) yields (2), while (2) yields (a) since (z, x) < |x|if |z] < 1.

Tosee (2) = (3), suppose x € I — E and decompose x into x = a+b wherea € E, b € S.
Thenb € TN Sandb # 0, s0 (y, x) = (b, x) > 0, which proves (3).

That (3) = (4) is obvious.

Since T is convex, it is easy to see that (4) = (5).

To see (5) = (2): We can assume that £ = {0} and S = V. Obviously, (5) = y € ro.
Hence,

€ = inf  (y,x) > 0.
xeT, |x|=1

Since T' N {|x| = 1} is compact, therzexists xoe T N{lx| =1} Withﬁ = (y, x0). Now (5)
= € > 0. Hence, (y, ﬁ) >e Vxel' —{0},or (y,x) >€lx| Vx eTl. m]

Appendix B: The Garding gradient map

Let F be a G-D polynomial of degree N on Sym?(R"), and let I be its Garding cone. We
fix A € I' and write (by Elementary Property (3) in [16])

N
F(A+1B) = F(A) [+ B))
j=1

where )\]F’A (B) are the F-eigenvalues of B € Symz(R") with respect to A € I'. Hence,

N

1
=D 4B = ——=(VF)4. B) (B.1)

d
—log F(A +1tB)
di * N F(A)

We shall assume that F is complete which means that all the variables in R” are needed to
define the G-D operator F'. There are many useful equivalent ways of describing completeness
(see sect. 3 of [18] for a full discussion of completeness). We point out that an invariant G-D
operator is complete.

Here we are using the notation (VF)4 = Dy F.
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Proposition B.1 A complete G-D operator F has uniformly elliptic linearization at each point
of its Garding cone I'. That is, at A € T

B +— ((VF)4, B) has coefficient matrix (VF)4 > 0.
Proof We use (3) in Proposition 3.5 in [18] saying that completeness is equivalent to
PNE = {0}. (B.2)
Note that
B>0 <= (B,P) > 0VPeP-—{0}. (B.3)
Now (B.1) for the derivative of F saysthatforA e Tand P e IntP C T

N
(VF)a, P) = F(A)Y 204 (P).
j=1

Now F(A) > 0 and Af’A(P) > 0 forall P > 0since P C T. Hence, ((VF)4, P) > 0, and

=0 < AP = =2 P) =0, but AP = = AP =0 =
P € E.Since P > Oand P € E the completeness hypothesis (B.2) implies P = 0. Applying
(B.3) we have (VF)4 > 0. O

Appendix C: The exhaustion Lemma

Again we take the general point of view. Let I' C V be the Garding cone for a Garding poly-
nomial g on a finite dimensional vector space V. It is useful to construct convex exhaustion
functions v (x) for I, that is, functions ¥ € C°(I") which are convex and all the prelevel sets
K. ={x €T : ¥(x) < c} are compact. Now ¥ (x) = —log g(x) € C*(T) is convex and
extends to a continuous function on I” which is equal to +o00 on dI". However, the associated
sets K. = {x € I" : g(x) > e~ ¢} are not compact. For example, when the dimension n = 1,
if glx) =x, T =(0,00) C V =R, these prelevel sets are not compact. Modifying — log x
by adding the linear function yx with ¥ > 0 a constant, yields an exhaustion function ¥ for
r.

There is a caveat here. This scenario given above, of adding a linear function to log g does
not work if " has an edge E. Recall from Appendix A that E is the largest linear subspace
contained in I'. For an extreme example, take the Laplacian g(A) = tr(A) on Sym2 R™)
where T is the half-space {tr(A) > 0} and E = {tr(A) = 0}. If we divide by the edge,
we fall onto the example above and the argument does work there. In general, the proposed
compactness argument holds only after dividing by the edge, or equivalently, restricting to
the span S = E1. We elect to restrict I to the span S since this conforms with the common
choice for the complex Monge-Ampere operator, where S = Symé((C”) is the Hermitian
symmetric matrices.

Definition C.1 The convex cone I' C V is called regular if the edge of T is {0}.

The Exhaustion Theorem C.2 Suppose g is a Girding polynomial on V of degree N with
Garding cone I'. Fix y € I'*, the (relatively) open polar. First, assume T'is regular. Then
the function ¥ (x) = (y, x) — log g(x)is a strictly convex exhaustion function for I', so the
prelevel sets

K. ={xel :(y,x)—loggx) <c}, forc e R
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are compact.
If T is not regular, then restricting ¥ to the span § = E gives a strictly convex exhaustion
function for the regular cone I'g = I" N S. Hence, the prelevel sets

K. ={xel'NnS:(y,x)—loggx) <c}, forc e R

are compact subsets of I's =T'N S.

Proof Tt suffices to prove the theorem when I' is regular, since otherwise g| ¢ has regular
Gérding cone I's = I' N § with the same open polar I'y = I'*.
Recall that — log g(x) has second derivative at a point x € " given by

N

[D-log @} &.&) = > (xi”‘(s))z

j=1

for all £ € V, where the Garding eigenvalues are taken with respect to the direction x € T'.
By Gérding [8] (or see [17]), the nullity set

EeVirAl" ® + -+ =0)

equals the edge E. Hence, the function —log g(x) is strictly convex on S + E-L, and so
¥(x) = (y, x) — log g(x) has the same property since (y, x) is affine.

Notice that since g = 0 on dI" and (y, x) is finite, the function v = 400 on dI". We
conclude that K, is a closed subset of I".

It remains to show that K. is bounded. For this we use the full hypothesis that y belongs to
the open polar I'* of I', which equals the interior of . By Lemma A.1 (2) this is equivalent
to the statement
(2) 3€ > Osuchthat (y,x)>¢€|x|Vx eT.

This implies that:

(e|lx)N+! ¢
T 9“"}

_ N + 1)!le€
={xel“:|x|§(;_\,7+l)eg<|§—|>} C Bgr(0)

K. C {x eT:eFl <efgx)} C {x el

with

(N + D)le€

R
eNH

sup  g(§) < oo.
geT|g|=1

Corollary C.3 For constants c1, ¢c; € Rand y € I'*, the set
Keyoo={x el :(y,x) <cyand log g(x) > c2}

is compact.

Proof One has K¢, ., C K¢j—c,- O
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Appendix D: The Giiler derivative estimates for G-D operators

Suppose F is a Garding-Dirichlet operator on Sym?(R") of degree N with Garding cone I'.
(We assume F # 0, and recall that by definition I is open.) For each A € I' there is a simple
formula for the k™ derivative of L = log F at A in terms of the Gérding eigenvalues )\f A
of F w.r.t. the direction A. '

In this section we shall abbreviate }»f’A to )»;\ Or just A;.

Theorem D.1 (Derivatives). At a point A € T and ¥ B € Sym?(R"):

(1)
N
(DaF,B) = F(A)Y 1} (B) and
j=1
(DAF,B) > 0 VBeT, withequality < B¢ E.
(2)
N
Di(log F)(B.B) = — Y (\}(B))* and
j=1
the quadratic form D%(log F) <0 with null space E.
(3)
N
D} (log F)(B. B, B) = 2% _(.}(B))’
j=1
4)
N
D (log F)(B.....B) = (=D 'k —1)1Y G4 (B)F Vk=1
j=1
In particular,

(1) The directional derivative of F at A is strictly increasing in all directions B in the closed
Gadrding cone T, other than the edge directions where it is zero.
(2) The restriction of L = log F to the span S is a strictly concave operatoronT's = SNT.

Proof For A € I"and B € Symz(R"), let ¢(¢) =log F(A +tB). Then

N
F(A+tB) = F(A) [ +24B)).
j=1
(See for example [8] or the Elementary Property (3) in [16].)
Since ¢(1) = log F(A) + Zyz (log (1 + m;‘), we have (with A; = A;*) that

N VoA

’ _ )‘j ” _ J
¢'(1) = ZHW ¢'(t) = Zi(wmj)r

Jj=1 Jj=1
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and for k > 2,

N k
®@) = ) k—1y —L
o) = (=)' );(HM;)"
Since <p(k)(0) = {DX() (log F)}(B, ..., B) this proves all the equalities in (1), (2), (3) and
(4). The remainder of the theorem follows from the fact that for all B € T, the eigenvalues
AY(B), ..., A% (B) are all > 0 with equality iff B € E, that is , the nullity {B : A{(B) =
. ~Aﬁ, (B) = 0} equals the edge E (see [8, 16]).

Now with A; = A;.‘(B) = Af’A(B) and A = (A1, ..., An) € RY, the little £¥-norm of A
is
1
k

N
e = | D 11 fork>1 and [Allco = sup [Aj].
o 1<j<N

Recall that

IXMlx < IA]le for £=1,2,...,k — 1 with equality iffA is an axis vector. (D.1)

To see this we can assume that A # 0. By homogeneity one can assume ||A||; = 1, and
therefore 0 < |A;| < 1 for all j. Then £ < k implies Z|Aj|k <> |)Lj|‘Z = 1. Hence,
IMlx < 1 = ||\|l¢ with equality if and only if X is a unit axis vector.

This translates into an upper bound estimate for the k™ derivative by lower order
derivatives.

Theorem D.2 (Giiler [9]). For A € T, B € Symz(R") and k fixed, if £ = 2,4, ... is even
and £ < k, then

' ! ()
- [@—1)! {4 1o F}(B,...,B)]

1
l

1
‘ [DY 10g F) (B.....B)

(k= 1!

Proof Note that fork =1, 3, ... odd,

N N
1 k
' {Dg)log F](B,...,B)': E ,\’; 55 I 1E = g,
j=1 j=1

k—1)!
and fork =2,4, ... even
1
(k) _ k
= {DA log F} (B.....B) = [
Hence, in both cases, ||Allx < ||All¢ for £ = 1,...,k — 1 yields the estimates for the kth
derivative of log F. O

For equality to hold in Theorem D.2, B must either be in the edge E or have exactly one
non-zero A-eigenvalue.
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Further discussion-second derivative formulas

The above first and second derivative formulas for log F at A € I', namely

N

N
(1) (Dalog F.B) = Y »jand(2) (Djlog F)(B,B) = — ) 33
Jj=1 j=1

forall B € Sym2 (R™) can be used to conclude interesting formulas for the second derivatives

of Fand F ¥ . Here we abbeiviate )L}p‘A (B)tojustA; or A;(B), and we recall the discriminant
polynomial

Discr(h1, ... An) = Y (4 — &))"

i<j
Proposition D.3
(D.1) (D§ log F)(B, B) = —|A(B)?
(D.2) (D3F)(B, B) = 2F(A)o2(A(B))
(D.3) (DAFV)(B, B) = —#F(A)%Discr(A(B))

Moreover, the quadratic forms D% log F and Df‘F have the same null space, namely
N ={B:A(B) =--- = Ay(B) = 0}. The nullity N is the same as the edge E = T N (=T
and also the linearity of F which is, by definition, the largest linear subspace on which F = 0.
Modulo this subspace, Di log F < 0, while Di F has Lorentzian signature with future light
cone T. Fiinally, the quadratic form Discr(A(B)) > 0 with null space {B € Symz(R") :
AM(B)=---=Any(B)} = E +R- A of dimension = dim(E) + 1.

Note that (D.3) proves the Garding Lemma that F' N is concave.

Proofof (D.2) By (1) and (2) above,

N
DN
Jj=1

DuF D% (F
Df,logF:DA< 4 ): aF)

F(A) F(A)
N 2
_ DsFoD4F _ DiF S,
F(A)? Fay \Z"
Note that (3_; Aj)?— Y x’j =207(A). o

Sketch of proof of (D.3) Use the standard formula (obtained by expanding out the right hand
term)

NIA(B)I> = 01(A(B))* = Descr(A(B)) = Y (hi(B) — 1;(B))’

i<j

to compute that

(D2FY)(B.B) = —— F¥(a) {Descr(kA(B))}
A ’ - N2 .
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Appendix E: The central ray hypothesis

Suppose F is a G-D operator on Sym?(R") of degree N with Gérding cone I'. (We assume
F s 0 and by definition I' is open and contains {A : A > 0}.)

The next lemma shows that there exists a unique ray R contained in the Garding cone T,
with the property that I is, in a certain sense, symmetrical about R.

LemmakE.1

FAV < [ sup F(B)ill:| Al forallAeT —E. (E.1)
BeT, || B||=1

This sup is attained at a unique maximum point Bo which belongs to I's = I' N S where
S is the span. Equivalently, equality occurs at a point A € T <= A € R =R* . By, the
ray through By.

Definition E.2 This unique ray R for (F, I) is called the central ray.

Proof Suppose By is a maximum point. First, By € I' since F vanishes on 9I". Secondly,
By € S. If not, then writing By = B + Bg with respect to the orthogonal decomposition
Sym2(]R") = E & S, we have Bg # 0. Therefore, || Bs| < ||Boll = 1, and hence

F <—BS )k L ror = L FByY > FByF
— S = 0 > 0 .
I Bsll I Bsll I Bsll

which contradicts that By is a maximum point.
For the remainder of the proof, we can restrict to the span § = E=, and we set y

1
SUP g T |1 B=1 F(B)WV.
1
The tangent affine hyperplane H = {A : (By, A) = 1} separates the level sets {F(B) ¥ =

y}and {|| B|| = 1} since F ¥ is strictly concave, and || B|| is strictly convex on S. Furthermore,
By is the only point of intersection of these hypersurfaces, since H touches each of these
hypersurfaces only at the point By.

If the sup in (E.1) is attained at a point A we may assume ||A| = 1 by dividing the
inequality by ||A||. Now we must have A = By since all other points on the unit sphere are

strictly below the hypersurface F N = y O

Corollary E.3 There is a unique point Ao, up to positive multiples, where the sphere and the
|
level set of FN have a common normal.

Proof Let Ay be a point where there is a common normal. We can renormalize so that
IlAo|l = 1, since everything is of degree 1. Let Hy be the tangent hyperplane to the sphere
at Ag. Then as in the proof of the theorem above Hj strictly separates the sphere and the

hypersurface F(A) N=F (Ap) N away from Ag; and the value of F ¥ atall points # Ag in the
sphere are < F(Ao)# Thus if Ag # Bo we would have F(Ao)ﬁ > F(BU)% > F(Ao)%. O

Corollary E.4 The central ray R is characterized by the fact that for any non-zero point
B € R, DgF and Dg||A||> = 2B are positively proportional, i.e.,

DpF =kB
withBeTs=8SNT andk > 0.
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We now examine conditions which imply that the central ray is R4 /.
Proposition E.5 If F is invariant under O(n), SU(m) with n = 2m, Sp,, withn = 4m, or any
other subgroup of O(n) whose only fixed line in Sym2 (R™) is the one through the identity I,
then the central ray R is the ray through I.
Proof If F is invariant under a subgroup G C O(n), then G fixes the central ray. O
Definition E.6 The Central Ray Hypothesis (CRH) is that: The identity / generates the central
ray R of (T, F).

There are several important ways of formulating the CRH, which we now describe.

Definition E.7 The Gdrding (or F-) Laplacian, denoted AF | is defined by
N
ATB) =) Af"(B) = ' (B).
j=1
Note that, after normalizing F(I) = 1,

N—1
AF(B) — i F(I+1tB) = #M
dt|,_g (N =D dt@W=D P

= ol (B) = (D; logF, B).

F(tl + B)
0

Theorem E.8 (Equivalent Formulations of the CRH). The following conditions are equiva-
lent.

(1)
F(A)Y <| sup FBT||A]l VAer
HB||2=n,BEF
with equality iff A =tl,t > 0.
(2) Djlog F = =~D;F = kI, for k > 0.

F(D)
(3) AF = gastandad - for g5 Q.

(4) F(AY < F(DVA(I,A) VA €T  withequality iff A € t1 + E
fort > 0. The k,n, N are related by kn = N.

Proof We have already shown that (1) <= (2). Now (2) <= (3) since AF(B) =
(D log F, B) implies that AT = kAs@dad . D, log F = kI. Statement (4) says that
F v (A) is bounded above by c(I, A) with equality at r/ + E, t > 0. Thus the derivative of
F v at / is a multiple of I which is equivalent to (3). O
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