

Homework 5

Due Monday Feb. 26 at the beginning of class

1. Let f be holomorphic and non-constant on a domain Ω . Show that:

- (i) For all $a \in \mathbf{C}$ the set $\{z \in \Omega : f(z) = a\}$ is discrete in Ω .
- (ii) If $\overline{\Omega}$ is compact and f extends to a holomorphic function on a nbhd. of $\overline{\Omega}$, then $\{z \in \Omega : f(z) = a\}$ is finite.

2. (The permanence of analytic continuation). Prove that:

If f is holomorphic in a domain (an open and connected set) Ω , and if there exists $\{|z - z_0| < \epsilon\} \subset \Omega$ where f is identically zero, then $f \equiv 0$ in all of Ω .

If the zeros of f have an accumulation point in Ω , then $f \equiv 0$ in Ω .

3. Prove that:

- (i) If $f : \mathbf{C} \rightarrow \mathbf{C}$ is holomorphic and has a non-essential singularity at ∞ , then f is a polynomial.
- (ii) The functions e^z and $\sin(z)$ have essential singularities at ∞ .

4. Determine explicitly the largest disk about 0 whose image under the mapping $w = z^2 + z$ is one-to-one. Do the same for $w = e^z$.

5. Let $\mathbf{H} = \{z \in \mathbf{C} : \text{Im}(z) > 0\}$ be the upper half plane.

- (i) Show that for any $a \in \mathbf{H}$, the mapping

$$w = \frac{z - a}{z - \bar{a}}$$

gives a holomorphic equivalence $\mathbf{H} \rightarrow \Delta$ where $\Delta = \{|z| < 1\}$.

- (ii) Let $f : \mathbf{H} \rightarrow \mathbf{H}$ be holomorphic. Show that for any $z_0 \in \mathbf{H}$,

$$\left| \frac{f(z) - f(z_0)}{f(z) - \bar{f}(z_0)} \right| \leq \left| \frac{z - z_0}{z - \bar{z}_0} \right| \quad \forall z \in \mathbf{H}.$$

6. Show by using Schwarz's Lemma that every one-to-one holomorphic mapping of an open circular disk onto another is given by a linear transformation (of S^2).

7. If γ is a piecewise smooth arc contained in Δ , the integral

$$\int_{\gamma} \frac{|dz|}{1 - |z|^2}$$

is called the **noneuclidean length** (or **hyperbolic length**) of γ . Show that every holomorphic function $f : \Delta \rightarrow \Delta$ maps every γ to an arc with noneuclidean length \leq that of γ . Deduce that the linear transformations of Δ to itself (cf. Problem 1 of Homework 1) preserve the noneuclidean length of all arcs.

Definition. A function $f : \Omega \rightarrow \mathbf{C} \cup \{\infty\}$ on a domain Ω is **meromorphic** if for each $a \in \Omega$ either

(i) f is holomorphic on $\{|z - a| < \epsilon\}$ for some $\epsilon > 0$, or

(ii)

$$f(z) = \frac{1}{(z - a)^m} g(z), \quad m > 0$$

where g is holomorphic on $\{|z - a| < \epsilon\}$ for some $\epsilon > 0$, and $g(a) \neq 0$. In this case a is called a **pole** of f and m is called **the order** of this pole.

8. Show:

(i) If f is meromorphic on Ω , then $\frac{1}{f}$ is also meromorphic on Ω , and the poles of f are isolated in Ω .

(ii) f is meromorphic in Ω if and only if $f : \Omega \rightarrow \mathbf{C} \cup \{\infty\} = S^2$ is a holomorphic map.

9. Let f be a meromorphic function on a neighborhood of $\bar{\Delta}$ with zeros: a_1, \dots, a_N poles: b_1, \dots, b_P in Ω , both counted to multiplicity. Assume there are no zeros or poles on $\partial\Omega$. Show that

$$\frac{1}{2\pi i} \int_{\partial\Delta} \frac{f'(z)}{f(z)} dz = N - P.$$

What happens if Δ is replaced by a bounded domain Ω with piece-wise smooth boundary?