APPROXIMATION BY SINGULAR POLYNOMIAL SEQUENCES
CHRISTOPHER J. BISHOP AND DAVID L. BISHOP

ABSTRACT. We strengthen the Weierstrass approximation theorem by proving that
any real-valued continuous function on an interval I C R can be uniformly approx-
imated by a real-valued polynomial with only real critical points and whose deriva-
tives converge to zero almost everywhere on I. Alternatively, the approximants
may be chosen so that the derivatives converge +oo almost everywhere, or so that
these behaviors each occur almost everywhere on specified sets. This proves that a
1994 theorem of Clunie and Kuijlaars is sharp.

1. INTRODUCTION

This paper is a sequel to [Bis24]. In that paper, the classic Weierstrass approxi-

mation theorem [Wei85] was strengthened by proving the following.

Proposition 1.1. Any real-valued, continuous function f on a compact interval I C
R, can be uniformly approximated by real polynomials {p,} so that all their critical
points lie in 1. If, in addition, f is K-Lipschitz, then we can take the {p,} to be
O(K)-Lipschitz. Moreover, p., converges weak-x to f' as elements of L>(I), but p!,

diverges pointuise almost everywhere.

In this paper, we give a different variation of this result in which p/, may be chosen
to converge almost everywhere to either 0 or co. A theorem of Clunie and Kuijlaars
[CK94] states that if {p/,} has only real zeros and converges pointwise to finite, non-
zero, real values on a set £ C R of positive Lebesgue measure, then {p/} must
actually converge uniformly on every compact subset of C to an entire function in
the Laguerre-Pdlya class (defined below). Thus if {p, } are polynomials with only real
critical points that converge uniformly to a general function f (not the anti-derivative
of a Laguerre-Pdlya function), then at almost every point = € I, the sequence {p/,(x)}
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either diverges or it converges to either 0, —oo or +00. The approximating sequences
{pn} constructed in [Bis24| have derivatives that diverge almost everywhere on I,
showing the first alternative can occur. In this paper, we construct approximating
sequences so that {p/, } converges to 0, or —oo, or +00. Thus all the behaviors allowed
by the Clunie-Kuijlaars theorem actually occur.

In analogy to singular functions in real analysis (non-constant, continuous functions
that have derivative zero almost everywhere), we shall say that {p,} is a singular
sequence of polynomials if {p,} converges uniformly to a continuous, non-constant
function f, but {p/ } converges to zero almost everywhere. Our main result is that
every real-valued, continuous function can be uniformly approximated by such a

sequence.

Theorem 1.2. If [ is real-valued and continuous on I, then there is a sequence of
polynomials {p,} with only real critical points, so that p, — f uniformly on I and
{p},} converges to zero almost everywhere. If f is increasing on I, then the elements

of {pn} may be chosen to be increasing on I as well.

Increasing polynomials p,, obviously satisfy p/, > 0, but it turns out that one cannot

always take strict inequality in the final part of Theorem 1.2.

Theorem 1.3. Suppose f is real-valued and continuous on I, and that {p,} are
real-valued polynomials that converge uniformly to f, and that the polynomials {p,}
only have real critical points. If f is not the anti-derivative of the restriction of a
Laguerre-Pdolya entire function to I, and if J C I is a non-trivial interval on which
f is mon-constant, then J contains a critical point of p, for all sufficiently large n
(depending on J). In other words, the critical points of {p,} accumulate everywhere

that f is non-constant.

The theorem of Clunie and Kuijlaars also allows for the possibility that {p/,} con-

verges pointwise almost everywhere to —oo or +00. We will show this can occur.

Theorem 1.4. If [ is real-valued and continuous on I, then there is a sequence of
polynomials {p,} with only real critical points so that {p,} converges uniformly to f

on I, and {p,} converges to +0o almost everywhere on I.

Without the restriction on the critical points, it is easy to obtain the weaker con-

dition |p/| — oo almost everywhere: if ¢, — f uniformly, then it is not hard to
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verify that p, = ¢, + =T}, — [ uniformly as well, and that |p,| — co almost ev-
erywhere if k, ' oo quickly enough, depending on the choice of {¢,}. Here, T, is
the nth Chebyshev polynomial, defined later in this introduction. Thus the point
of Theorem 1.4 is to get the “one sided” divergence to +o0o, while restricting the
critical points to the interval I. By first approximating — f by a sequence {p,} with
derivatives tending to +oo almost everywhere, and then changing signs, it is clear
that Theorem 1.4 also holds with +o0o replaced by —oo. In Section 5, we will also
note that similar constructions give sequences {p,} with only real critical points so
that p, — f uniformly and with p/, tending to 0, —oco or +oo respectively, almost
everywhere on any three disjoint, measurable sets whose union is /.

Polynomials with only real critical points have played a role in several problems,
e.g., density of hyperbolicity in dynamics [KSvS07], rigidity of conjugate polynomials
[Eps02], Smale’s conjecture on solving polynomial systems [HK10], and Sendov’s
conjecture on locations of critical points [BP07]. In holomorphic dynamics, the orbits
of critical points play an essential role. Various constructions in the field make use
of approximation theorems such as Weierstrass’s and Runge’s theorems, and it is
desirable to control the locations of the critical points of the approximating functions.
In [BL24], a version of Runge’s theorem is proven where all critical points may be
taken to lie within any open e-neighborhood of a connected set K. In [Bis24], this is
further improved to € = 0 when K = I C R is an interval, i.e., Weierstrass’s theorem
holds even if we require all critical points to lie in /. However, [Bis24] also constructs
disconnected sets K C R where Cg(K) (real valued, continuous functions on K) is
not the uniform closure of polynomials with all critical points in K. Classifying the
sets K when this does occur remains an open problem.

The Laguerre-Pdélya class, mentioned above, is the collection of entire functions
(holomorphic functions on C) that are limits, uniformly on compact sets, of real
polynomials with only real zeros. These have been characterized as follows [P4113]:
it is the collection of entire functions f so that (1) all roots are real, (2) the nonzero

roots satisfy Y [2,|7% < 0o and (3) we have a Hadamard factorization

(1.1) f(Z) _ Zm€a+bZ+CZ2 H(l B i)ez/zn7
Zn
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with m € {0,1,2,...}, a,b € R and ¢ < 0. In particular, functions like exp(—2?%) and
sin(z) are in the Laguerre-Pdlya class, but exp(z?) and sinh(z) are not.

A theorem of Korevaar and Loewner [KL64|, extending earlier work of Laguerre
[Lag82] and Pélya [P4113], says that if {p,} are polynomials with only real zeros that
converge uniformly to f on an interval I C R, then f must be the restriction to I of
a Laguerre-Poélya entire function, and that p, converges to f on the whole complex
plane (uniformly on compact sets). See also [Clu92]. Clunie and Kuijlaars [CK94]
later proved that this also holds if we only assume p,, converges in measure to f on
a subset ¥ C R of positive measure. Since almost everywhere convergence on a set
of finite measure implies convergence in measure, we obtain the pointwise version of
their theorem quoted earlier.

If a real polynomial p of degree n + 1 has all n critical points in [—1, 1], then its

derivative can be written in the form
(1.2) plr)=CJJ -2,

where C' € R and {2'}}?_; C [—1,1]. The polynomials used in this paper are all of this
form, where {z}'} are perturbations of the roots {r}} of nth Chebyshev polynomial
T,,. We briefly recall the definition of these polynomials.

Let J(z) = %(z + 1/2) be the Joukowsky map. It is easy to verify that this map
sends a point z = x + iy on the unit circle to z € [—1,1], and that J is a 1-1
holomorphic map of D* = {z: |z| > 1} to U = C\ [-1, 1]. Thus it has a holomorphic
inverse J~! : U — D*. Therefore T,, = J((J~')") is a n-to-1 holomorphic map
of U to U that is continuous across OU = [—1,1], so by Morera’s theorem (e.g.,
Theorem 4.19 of [Marl9]) it is holomorphic on the whole plane, and hence it is a
degree n polynomial. Unwinding the definition, we see that 7,, maps [—1, 1] into
itself and is given by T,,(x) = cos(narccosz). It takes the values +1 at the points

{ap} = {cos(m£)}r_, (the vertical projections of the nth roots of unity), and has

2k—1
2n

between the roots of unity). See Figure 1 for an example. This figure (and many

its zeros at {r*} = {cos(r2-1)}1_, (the vertical projections of the midpoints on T

others in this paper) was drawn using the MATLAB program Chebfun by L.N. Trefethen
and his collaborators. See [DHT14].
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FiGURE 1. A 2-point perturbation of T33, shown over the full interval
[—1,1] (left) and an enlargement around the perturbed roots (right).
Separating two adjacent roots creates a larger node between them,
while having little effect on the size of more distant nodes.

Fix a large positive integer n and consider the Chebyshev polynomial 7;,. Order
the n roots of T, from left to right, and for k = 1,...,n—1, let I}’ denote the interval
between the kth and (k + 1)st roots of T,,. We call these the “nodal intervals”, and
call the restriction of 7, to I} a “node” of T,,. Every node of T}, is either positive or
negative. Suppose it is positive. If we move the roots of 7), at the endpoints of I}
farther apart (and leave all the other roots of T, fixed), then the node between them
becomes higher, and the two adjacent negative nodes each get smaller (less negative).
More distant nodes are changed slightly, but the effect diminishes with distance from
I7. This will be made precise in Section 3. See Figure 1 for the basic idea.

This is the fundamental operation that we use to create the polynomials we want:
choose an interval J bounded by two roots of T}, and move each root by equal amounts
away from each other. This procedure was introduced in [Bis24], where roots were
moved using small perturbations. Here “small” means that a root r} of 7T, is only
moved within the interval [r}_,, 7, ,], i.e., it is moved no further than the nearest
adjacent root on either side, and usually it is only moved a small fraction of this dis-
tance. When the perturbations are small in this sense, then the perturbed Chebyshev
polynomials created are uniformly bounded. This was important in [Bis24] in order
to prove that a K-Lipschitz function f can be approximated by polynomials (with
only real critical points) that are (C'K)-Lipschitz, for some fixed C' < oo. [Bis24]

shows we must have C' > 1, but the optimal value remains unknown.
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In this paper, we will be concerned with “large” perturbations, i.e., roots that are
moved farther than the closest adjacent roots. We will choose an even number of
adjacent Chebyshev roots {r}}, |, 77 s, - -, 1 on}, and then move half these to points
close to (but larger than) a = r}, and move the other half to points close to (but less
than) b = !, on,,. This creates a very large node inside the interval (a,b); we will
show that the height of this node grows exponentially with N, e.g., Equation (3.6).
By choosing the size and sign of these nodes correctly, and rescaling appropriately, the
anti-derivatives form polynomial sequences satisfying Theorems 1.2 and 1.4. Some

examples of multi-point perturbations are shown in Figure 2.

I I I I I I I I I
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

F1GURE 2. A Chebyshev polynomial of degree 300 near the origin, and
the polynomials obtained by moving N pairs of roots for N = 1,2, 3.
The white dots represent roots that are moved; all others are kept
fixed. The thinner curve is the original Chebyshev polynomial and the
thicker is the perturbed polynomial. The height of the new nodes is
better illustrated in logarithmic coordinates in Figure 3.
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Figure 3 gives essentially the same plots (superimposed on top of each other) but
with a logarithmic scale on the vertical axis. The heights of the new nodes do appear
to grow exponentially in N (linearly on the logarithmic scale) and we will verify this
in Section 3. The bottom picture in Figure 3 shows anti-derivatives of the perturbed
polynomials, normalized to have total integral 1. Because the un-normalized mass
grows exponentially with /N, the normalized functions are exponentially smaller than
the originals. In particular, since the un-normalized perturbations are bounded by 1
outside of the interval I where the perturbations occur, the normalized polynomials
are exponentially small outside this interval. Figure 3 suggests that we can approx-
imate a step function using anti-derivatives of perturbed Chebyshev polynomials as

described above. This will be made precise in later sections.

02 I I I I I J
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

FIGURE 3. On top is log |p| for perturbations of a degree 300 Cheby-
shev polynomial after moving N pairs of points, for N =1,...,5. The
maximums are growing exponentially with N. On the bottom are the
anti-derivatives of the perturbations, renormalized so f_ll p(t)dt = 1.
These anti-derivatives converge to a step function with jump at 0. In
both pictures, the horizontal axis is restricted to [—.2,.2].
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The idea behind Theorem 1.2 is that we can create a perturbed Chebyshev poly-
nomial that has nodes with exponentially large area near specified points of [—1, 1],
and these nodes can be chosen to be either positive or negative. By multiplying by
a scalar, we can make these nodes have area +e¢, while the function is much smaller
away from these nodes. The integral of such a function looks like a step function with
jumps of size +e€, and by choosing the signs and areas of the large nodes correctly
we can uniformly approximate any continuous function by polynomials of this form,
i.e., a polynomial with only real critical points and with derivative less than e except
on a set of length e. Taking a sequence of such polynomials with > €, < oo, and
applying the Borel-Cantelli Lemma, gives a singular sequence of polynomials con-
verging uniformly to f, proving the first part of Theorem 1.2 (once we have verified
several details). See Figure 4 for an example. Note the numerous critical points of

the approximating polynomial; these are consistent with Theorem 1.3.

0.6

05|~
0.4} M
03|
02|

0 1 1 1 1 1 1 1 1 1 |
0.2 0.18 0.16 0.14 0.12 0.1 -0.08 -0.06 -0.04 -0.02 0

FIGURE 4. At top, a smooth function is approximated by step func-
tion, which in turn is approximated by the anti-derivative p of a per-
turbed Chebyshev polynomial. In this example, we have moved four
roots near each jump. The step function and p are easier to distinguish
in an enlargement over [—.2, 0] (bottom picture).
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Our other results are proved using variations on this construction. For example, to
obtain monotone approximations in Theorem 1.2, we follow the procedure above, but
applied to T? and perturbing each double root as a single point. Then every root of
the new polynomial has even degree, and hence the corresponding anti-derivative is
monotone. This will allow us to approximate any monotone function f by a monotone
singular sequence. For details, see Section 4.

If A and B are both quantities that depend on a common parameter, then we use
the usual notation A = O(B) to mean that the ratio A/B is bounded independent
of the parameter. The notation A < B means the same as A = O(B). The more
precise notation A = O¢(B) will mean |A| < C|B|. For example z = 1+ Oy(2) is
simply a more concise way of writing 1 — 2 <z < 1+ 2. The notation A = Q¢(B)
(or A 2 B) means A > CB or, equivalently, B = O¢(A). We use A >~ B to mean
that both A < B and A 2 B hold, i.e., that A and B are comparable up to a
fixed multiplicative constant, independent of the implicit parameter. In general, the
notation A = B means that two previously defined quantities are equal, and A := B
defines A in terms of B. This paper is mostly self-contained, except for a few standard
estimates involving Chebyshev polynomials, quoted from [Bis24].

We thank two anonymous referees for detailed reports that caught several minor

errors and greatly improved the exposition.

2. FORCED ACCUMULATION OF REAL CRITICAL POINTS

In this section, we will prove Theorem 1.3, but we start by gathering together
various facts that we will need for the proof. Recall, from the introduction, the
theorem of Clunie and Kuijlaars: if {g,} has only real roots and converges pointwise
to finite, non-zero limits on a set of positive Lebesgue measure, then it must converge
uniformly on all compact planar sets to a Laguerre-Pdlya function. As a consequence

of this, we will deduce the following result.

Lemma 2.1. Suppose J = [a,b] C R is a compact interval and {q,} is sequence of
real polynomials with only real roots, and that all the roots of all the g, are in R\ J.
Suppose also that m < q, < M on J, for some 0 < m < M < oo independent of n.
Then there is a subsequence of {q,} that converges uniformly on compact subsets of

the plane to a Laguerre-Pdlya function.



10 CHRISTOPHER J. BISHOP AND DAVID L. BISHOP

Proof. Suppose q(x) = C'[[(x — rx) is a polynomial with roots {ry} C R\ J. Since
q does not change sign on J, without loss of generality we may assume ¢ > 0 on J.
Then

log ¢() = log|q(x)| = log |C| + ) "log |z — 1y,

is a finite sum of continuous, concave down functions on J. This means that there
is a ¢, € [a, b] so that log ¢, (and hence g,) is increasing on [a, ¢,] and decreasing on
[cn, b] (possibly ¢, = a or ¢, = b). For every n, ¢, is either < (a+b)/2 or > (a+b)/2.
Assume > (a + b)/2 occurs infinitely often. Then by passing to a subsequence we
may assume every ¢, is increasing on J' = [a, 5(a + b)], the left half of J. The other
case, where we have that {g,} is decreasing on J” = [3(a + b), b], is almost identical
to what follows, and is left to the reader.

Let @ C R denote the rational numbers. For each z € J N Q we can take a
subsequence so that {g,, (z)} converges to a limit in [m, M]. By a diagonalization
argument, we can find a subsequence that converges for every rational number in .J,
and at the endpoints of J'. The limiting function ¢ must be increasing on J' N Q,

and it can be extended to an increasing function on all of J' by the formula
q(z) =inf{q(y) :y € ' NQN[z,00)}.

An increasing function has only countably many discontinuities (all jump disconti-
nuities), so ¢ is continuous almost everywhere on J', and 0 < m < ¢ < M < 0.

If ¢ is continuous at z, then we claim ¢,(x) converges to g(x). To prove this,
suppose € > 0 and use the continuity of ¢ at x to choose § > 0 so that |zt —y| < ¢
implies |¢(z) — q(y)| < €. For y € QN (x,z + §), we have (since g, is increasing)

() < an(y) < qy) + € < qlx) + 2¢

for large enough n (depending on €), and hence limsup ¢, (z) < g(z). Similarly, if
z2€QnN(x—0d,x), then

() = qn(2) = q(2) — € = q(x) — 2¢

for large enough n, and hence lim inf ¢, (z) > ¢(z). Thus ¢,(x) — ¢(z) at every point
of continuity of ¢q. Since ¢ is continuous on a set of positive measure, the conclusion

of the lemma follows from the theorem of Clunie and Kuijlaars. U
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We will say a real-valued, continuous function f on an interval J = [a,b] is “in-
flection type” if there is a division point ¢ € [a,b] so that f is convex up on |a,c|
and concave down on [c,b] (there may be many such points if f is linear on some
subinterval of J). We allow ¢ = a or ¢ = b, hence convex and concave functions on J

are also considered inflection type.

Lemma 2.2. If {f,}° are all inflection type on J = [a,b], and f, — f uniformly on
J, then f is also inflection type.

Proof. Let {c,} be a division point for f,. By taking a subsequence, if necessary, we
may assume ¢, — ¢ € [a,b]. First assume a < ¢ < b. Then for any € € (0,¢ — a), f,
is convex up on [a, ¢ — €], if n is large enough so that ¢, > ¢ — e. Uniformly limits of
convex functions are convex, so we deduce f is convex up on [a, ¢|. A similar argument
shows f is concave down on [c,b]. If ¢ € {a,b} then one of these arguments shows f

is convex up or concave down on all of J, hence it is still of inflection type. U

An increasing function on an interval need not be strictly increasing on any sub-
interval, (e.g., the Cantor singular function), but an increasing, inflection-type func-

tion does have this property.

Lemma 2.3. Suppose f is inflection type and increasing on J = [a,b]. Then there
is [z,y] C [a,b] so that f is constant on both [a,x] and [y,b], and so that f is strictly
increasing on |[x,y]. In particular, either f is constant on J (if x = y) or it is strictly

increasing on some non-trivial sub-interval J (if v < y).

Proof. 1f not, then there is a non-trivial interval [s,¢] C [a, b] such that f is constant
on [s, t] but non-constant on both [a, s|] and [¢,b]. Thus f(s) > f(a), and this implies
that f is not convex up on [a,u] for any s < u < t. Thus the division point for f
satisfies ¢ < s. Therefore f must be concave down on all of [s,b]. Since it is constant
on [s,t] and increasing on [a,b] this implies it is constant on [s,b], a contradiction.

This proves the lemma. U

Proof of Theorem 1.3. Suppose f is real-valued and continuous on [—1, 1], that {p,}
are real-valued polynomials converging uniformly to f on [—1,1], and that these
polynomials have only real critical points. Assume J C [—1, 1] is a non-trivial interval,

that f is not constant on J, and that all the critical points of every p,, are contained
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in R\ J. Then p/, is non-zero in J and by multiplying f by —1 (if necessary) and
passing to a subsequence, we may assume every p/, is positive in J. By Lemma 2.1 it
suffices to show that there is a non-trivial subinterval of J where {p/ } is uniformly
bounded above and uniformly bounded away from zero.

As in the proof of Lemma 2.1, J divides into left and right sub-intervals so that p!,
is increasing on the first sub-interval and decreasing on the second (possibly, just one
of these sub-intervals occur). Thus each p, is inflection type on J. Thus by Lemma
2.2, f is also inflection type on J. Since we assume f is not constant on J, Lemma 2.3
implies there is a non-trivial subinterval J' = [a,b] C J where f is strictly increasing.
Let J” = [c,d] = [2a+ b, 3a+ 2b] be the middle third of J'. We will show that {p],}
has the desired lower and upper bounds on this interval.

First we prove the lower bound. Let € = min(f(c) — f(a), f(d) — f(c), f(b) — f(d)).
Since f is strictly increasing on [a,b] this is positive. Assume n is so large than

|f —pn] < €/4 on [a,b]. Suppose s € [c,d]. If p/, is increasing on [a, s], then

(=)= [ B =pals) = pal@) 2 £~ @) = § 2 1) - f@) ~ 5 2 5.
Hence
' (s) > €/2 < € _ 3 S _¢€
Pn ~“s—a  2c—a) 20b—a) b—a
Otherwise, if p/, is decreasing on [s, d|, we have
b
b= s 2 [ o= = pul9) 2 ) = )~ 5 = F0)— f(d) - § = 5
and hence
€/2 € 3e €

) 2 S T h—a

Since p!, increases then decreases over J’ (possible just increasing or just decreasing),
one of these two options must hold, so we get the lower bound p/,(s) > m :=¢/(b—a).

To prove the upper bound, we use the fact that logp/, is concave down on J.
Suppose M,, is the maximum of p/, over J” and that the maximum is attained at = €
J”. Then log p!, is bounded between log m and log M,,, and by concavity the graph of
log p!, lies above the triangle with vertices (¢, log m), (z,log M,) and (d,logm). Hence
logpl, > 3(log M,, + logm) on an interval I C J” of length |I| = 3]J"| = (d — ¢)/2.



APPROXIMATION BY SINGULAR POLYNOMIAL SEQUENCES 13

Therefore p/, > v/mM,, on I, which implies

/pﬁl > |I|\/mM,,.

I

By the Fundamental Theorem of Calculus, this integral equals p,(d) — p,(c). Thus
if n is so large that | f(d) — pn(d)| < €/4 and |f(c) — pn(c)| < €/4, then

(on(d) = pu(0))*  _ (f(d) = f(c) +€¢/2)°

M, <
B ml|I|? - m|I|?

VAN
W

IA
W
o

m(b— a)?
oo (f() = fla))?
= 90 e(b—a)

This proves M, = supy. 4 pl, is bounded independent of n, as desired. By Lemma 2.1,
this implies that f must be a Laguerre-Pdlya function, contrary to our assumption.

This contradiction proves Theorem 1.3. 0

Example: If f(z) = [ e dx then log f/ = 22 is not concave down in any sub-
interval of [—1,1]. Although f is entire, if p, — f uniformly on [—1, 1], and if every
P has only real critical values, then these critical values must accumulate everywhere

on [—1,1], even though f itself only has a critical point at zero.

3. 2-POINT AND MULTI-POINT DISTORTIONS

In this section, we record some simple algebra that shows how a polynomial changes
as we move some of its roots. This will verify certain claims made in the introduction.
If a polynomial p has zeros at +a, for a € (0,1), and if we move these roots
respectively to 41, then we obtain a new polynomial p = R - p, where R is the

rational function

(3.1) R<$>_(x—l)(x+l) B x2—1_x2—a2+a2—1_1_1—a2
' C(r—a)(xta)  2—a> z? — a? B 2 —a?

It is also easy to check that R is even, and that on the interval (—a,a) we have
R(x) > R(0) = a=2. See Figure 5.
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Lemma 3.1. For |z| > 1 we have 1 — 272 < R(x) < 1.

Proof. To prove the lower bound, note that

lz| >1 = —a*2* < —ad?

= (1 —az) < 22— q?

1—a? < 1
= 2 —a2 — g2
1

For the upper bound, observe that if |z| > a, then 22 — a* > 0, so R(z) < 1.

S
3

0

I
o
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FIGURE 5. On top is a plot of R(t) = (z*—1)/(z*—a?) for a = .5 and
below it are superimposed plots for ¢ = .1,.2,...,.9. The horizontal
dashed lines are at heights £1. Outside the interval [—1, 1] all these
graphs are between 1 — 272 and 1.

Lemma 3.2. Ifa:=1—a € (0,1), then
(3.2) |R(x)| <1 for |z| > (3+4+a)/d=1—a/d
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Proof. As noted above, if |z| > a, then R(z) < 1. Thus R(z) < lif |z| >a=1—a.
So we only need to check that R(z) > —1 for |x| > 1 — «/4. To prove this, note that
if 22 > a? , then R(z) > —1 is equivalent to

22 —1>a®>— 22

1
= ZL'Q > §(a2+1)

@»mp»¢;a—ay+n
& z| > V1—a+a2/2.

The right side is less than 1 — a//4 if and only if
Vi—a+a?/2<1-a/4

& 1l-a+a?/2<1—a/2+a%/16

=3 042(% — 1i6) < af2
= a< §
=
which is certainly true, since we assumed « = 1 —a € (0,1). Thus |z| > 1 — «a/4
implies R(z) > —1. O

We can apply a linear transformation to the points in the preceding estimates.
Note that translating the points {£1,4a}, all by the same amount just translates
R. Similarly, dilating to get new points {£\, +Aa} just replaces R(z) by R(lz/)\).
In particular, if b; < a; < ay < by are chosen so that ¢ = %(al +ay) = %(51 + bs),
and aj,as = ¢+ r, by,by = ¢+ s, then these four points are images of {£1,+a}
(where a = r/s) under a linear map. Hence, the distortion function only changes by

pre-composition with a linear map, and we deduce the following result.

Corollary 3.3. With notation as above, the distortion function R corresponding
moving a1,as = ¢ £ 1 to by, by = c £ s satisfies

(1) R(z) = (s/r)* on (a1, az),

(2) 0 < R(z) <1 on R\ [by,by],

(3) |[R(z)| <1 on{|lxr—c|>(1—a/d)s} wherex =1—s/r .

(4) 1—22<R(x)<1on{|lz—cl>s}
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If we move multiple pairs of zeros in this way, then the distortion function for the
combined moves is just the product of the distortion functions for each pair. More
precisely, suppose N is a positive integer and we have 2N points {ak}%zl (note that

there is no point ag) such that
—1<a,N<a,N+1<---<a,1<0<a1<---<aN<1.

Suppose we move the pair (a_g,ax) to a pair (b_j,by) C [—1,1], again with the
property that b_, + by = a_j + ax. Given a small 6 > 0, we will also assume that
1 =9 < |bg] < 1, so that the new zeros are all quite close to +1. In particular,
lbp, — b_k| > 2 — 25. We can place b_j and by so that this happens as long as
la_k + ai| < 9; this will occur in our construction. Indeed, we will take the {a;} to
be approximately evenly spread in [—1, 1], i.e., a; ~ sign(k) - (2|k| — 1)/(2N + 1) for
k| =1,..., N and we will choose § < 1/N.

For the moment, we make the weaker assumption that
(3.3) 1/(2N +2) < |ag| < |k|/N.

This implies |ay — a_g| < 2k/N. In later applications, we will renormalize the points

in an interval J = [a, b], and use the analogous condition

|(l]c — (a+b)/2|

(3.4) 1/(2N +2) < a2

< [K|/N.

The 2N-point distortion function Ry, resulting from moving the points {a;} C
[—1,1] to points {bx} C [—1,1], is the product of N different 2-point distortion
functions as described above, one for moving each pair {a_g,ar}. Thus we have
0 < Ry(z) <1 on {|z| > 1}. Moreover, taking logarithms and using some calculus,

it is easy to check that for |z| > 1
(3.5) max(0,1 — N/2?) < (1 — 273" < Ry(z) < 1.

We also claim that our perturbed polynomial p = p- Ry satisfies [p| > |p| near the
orgin. Assume that we have chosen § so that 6 < 1/N. By Part (1) of Lemma 3.3,
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F1GURE 6. Logarithmic plots of 2/N-point distortion functions Ry for
N =1,...,9. Here we are moving the points {£(2k —1)/(2N + 1)},
to {£1}; these points are evenly spaced in [—1, 1], and moved to the
nearest endpoint. In each plot, one dashed line is at height 1, and the
other shows the minimum value of Ry over the central interval. The
final plot shows a linear approximation (with slope = 2) to the log-plot
of these minima versus N, indicating the minima grow like ~ exp(2N).

on the interval |z| < 1/(2N + 2), the 2N-point distortion satisfies
b — b\ (2—26)
Ra(z) > H ( k k) > ( )

: T (2k/N Y
= (2—20)*NNPN2N(N)?
(

%)2NN2N(N!)2

for € [a_1,a1]. Using the upper bound in Stirling’s approximation for N!,

V2rN (g)N < N!' < V27N (g)Nexp(ﬁ)

17
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and the inequality e='/6N > ¢=1/6 > 1/2, the above lower bound for Ry becomes
(1= L)2N2N-1/6N NN (] _ Ly2N N

> N N
Rx(w) = 29T NN2N =T N

Recalling from calculus that 1/4 < (1 —1/N)N¥ #e~! for N > 2, this becomes
[(1—1/N)N]2e2N N 2N

27N — 327N’
For large N, this is bigger than eV, so the size of the perturbed node grows at least

(3.6) Ry (z) >

exponentially with N.

Thus the central node of the 2N-perturbed polynomial is exponentially larger than
the original node. The area of the original node is comparable to |a; —a_1], so the area
of the new node is larger than this by a factor of at least e*V /327 N. A logarithmic plot
of the actual distortion in the cases M = 1,...,9 is shown in Figure 6. As expected,
the growth of the distortion function near the origin is exponential. Numerically, the

2

growth rate appears to be ~ ¢*V, which is what we expect from (3.6).

4. APPROXIMATION BY POLYNOMIALS WITH SMALL DERIVATIVES

The idea of the proof of Theorem 1.2 is to approximate a continuous function
f by a step function g, and then approximate g by the anti-derivative p of a scalar
multiple of a polynomial ¢ that is constructed by perturbing the zeros of a Chebyshev
polynomial T;,. The basic idea was illustrated in Figure 4.

This proof is the most intricate in the paper, so to make the argument easier to
follow, we break it into a number of steps. We list them here, and give the details
later in this section. After translation and rescaling, it suffices to prove the theorem
for the interval I = [—1, 1].

(1) Approximate f to within € by a step function g, where the jumps of g are all
of size +e. Let K denote the number of jumps of g and let —1 < 51 < --- <
sk < 1 denoted their locations. Define s = —1 and sg; = 1. Let § > 0 be
the minimum distance between the points of {s;}5 .

(2) We will define K disjoint intervals {G;}& C [—1,1], so that for each j =
1,..., K, the interval G; contains (and is approximately centered at) the
jump point s;. Each G; will be a union of 2N 4 1 nodal intervals of a Cheby-
shev polynomial 7,, where N := 4[logn|. The disjointness will follow if n is

sufficiently large, depending on §. Since each G; is a union of an odd number
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of nodal intervals of T,,, there is a central nodal interval which we denote G’]C.
We will choose G so the sign of T;, on the central interval jS is the same as
the sign of the jump of g at s;. The leftmost and rightmost nodal intervals of
T,, contained in G; will be denoted G]L and Gf respectively.

We let 7; denote the length of the shortest nodal interval contained in Gj.
Clearly n; < |Gj|/(2N + 1), and will show that if n is large enough, then the
ratio |G;|/n;(2N + 1) is as close to 1 as we wish.

For each j, we choose points {bk}%zl C G, to be the new roots of the per-
turbation of 7},. Half of these b;’s will be located in a subinterval J_ C G’JL of
length 7,/10, and the other half within an interval J, C Gf of equal length.
If we perturb only the roots of T}, in G, then the perturbed polynomial will
have one large node covering most of G;. We will estimate the area of this
node, showing it is exponentially large in .

By continuously moving the new roots {b;} back towards the center of Gj,
the area under this large central node decreases continuously. Thus we can
make it attain any value we want within a specified range. In particular, we
will be able to attain the value 4¢-e™/2, where € and N are as chosen in Steps
1 and 2 above. The nodal interval corresponding to this large central node
will be denoted J; C Gj.

We create a polynomial ¢ from 7}, by making the perturbations described in
Step 6 in every G; simultaneously. Then set p’ = e=¥/2.¢. We will show that
lgf <1on X =[—1,1]\U,J;, and hence that |p'| is exponentially small there.
Next we will show that the perturbations performed in one interval G have
only a small effect on the size of the large central node in any other G;, j # k.
Thus each of the “large nodes” of p/ has integral [ J; p' &~ e with errors that
tend to zero as n increases. This completes the proof that the step function
g (and hence the original function f) is uniformly approximated by p = [ p/,
a polynomial with only real critical points.

We verified in Step 7 that |p/| is very small except possibly on the set U,.J;,
which has small length. By taking an appropriate sequence of such approxi-
mants and applying the Borel-Cantelli lemma, we will deduce that f can be

approximated by a singular sequence of polynomials.
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(10) The final step is to verify that if f is increasing, then it can be approximated
by a singular sequence of increasing polynomials. This requires only a minor
modification of the proof sketched above, obtained by repeating the proof,
but now applied to 72, and moving roots in pairs. The resulting polynomial
g will then have only roots of multiplicity two, so we can choose ¢, and hence

p’, to be non-negative everywhere.

Before filling in the details of the preceding sketch, we recall some estimates con-
cerning nodal intervals and integrals for Chebyshev polynomials. These are quoted
from [Bis24], but are standard facts. Recall that the nodal intervals of T,, are the
n — 1 intervals between adjacent roots of T}, and are denoted {II'}?~| from left to
right. The intervals are symmetric with respect to zero, so the estimates below only

have to be given for nodal intervals hitting [—1,0].
Lemma 4.1 (Lemma 2.3, [Bis24]). For 1 <k < (n—1)/2, % <|1p| < kz¥.

Lemma 4.2 (Lemma 2.4, [Bis24]). If 1 <k < k+j < n/2 then

|Il?+'| ]
1< <14 ==,
= |[1?| <1+ 3k

Lemma 4.3 (Lemma 3.2, [Bis24]). [,

oo 1Tl = 2117

Proof of Theorem 1.2.
e Step 1: Without loss of generality, we may assume f(—1) = 0. Fix e € (0,1).

Choose an ordered set of points {—1 =5y < 51 < -+ < s < Sg41 = 1} so that
|f(8j+1) - f(S])| = €, for j = O, 1, .. .,K -1

|f(sk) = f(sx—1)| < e,

and

|f(t) — f(s;)] <e, fort € [s;,sjt1).
Define a step function g(t) on [—1,1] by g(t) = f(s;) for t € [s;,sj11), for j =0,... K.
Clearly || f — glls <e. Let 6 = minj<j<gi1(s; — sj_1).
e Step 2: Suppose n is a large positive integer, that will be fixed at the end of the
proof, depending only on €, § and K from Step 1. Consider the Chebyshev polynomial

T,,. Choose K nodal intervals {/ K JK:1 so that [} either contains s; or it is adjacent
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to a nodal interval that does contain s;. We choose the interval so that 7;, has the
same sign on ],?j as the sign of the jump of g at s;.

Set N = 4[logn], and let G; be the union of I’ and the N nodal intervals on
either side of it. Thus G is the union of 2N + 1 nodal intervals; the central interval
],?j is denoted jS for brevity, and the the leftmost and rightmost are denoted G]L and
G respectively. By Lemma 4.1, the intervals {G}} are pairwise disjoint if n is large
enough (depending only on ¢). Indeed, this lemma implies the length of G; is less
than 47%[logn]/n, so the distance between any two of these intervals is at least 6/2,
if n is large enough. (To simplify notation, we have omitted a superscript n, writing
G instead of G}. This convention will also apply to other points and intervals below,
but the implicit dependence on n should be clear.)

e Step 3: For each j =1,..., K, we are going to move the 2N roots of T}, inside G}
to new points near the endpoints of GG;. This procedure was described in Section 1
and illustrated in Figure 2. The endpoints of G; will be left fixed. The 2N roots of
T), in the interior of G, are denoted (again omitting the dependence on j and n from

the notation)
a_ny < - <ag1<ap <---<an

as in Section 3 (there is no ag). According to Lemma 4.2, any 2N + 1 adjacent
nodal intervals in [—1, 1] that are at least distance ¢ > 0 from the endpoints +1, all
have comparable lengths to each other, with a multiplicative factor 1 + O(N/nd) =
1+ O((logn)/nd). In particular, if n is large enough (depending on d), then the
roots of T,, contained in G satisfy the renormalized estimate (3.4). Let 7; denote the
smallest length of a nodal interval for 7,, inside G;. Note that n; < |G;|/(2N + 1),
and that we can make (2N +1)n;/|G/| as close to 1 as we wish by taking n sufficiently
large. In other words, the roots of T;, inside GG; are as evenly spread as we wish, if n
is large enough.

e Step 4: If 1 < M < N, we say a set of 2M points {bj}ﬁzl C G, is admissible if

(1) {b_n,...,b_1} and {by,...by} are each contained in disjoint subintervals
J_, J; of G, of length at most 7;/10, and
(2) 5(b_p+bp) = :=3(a—p +ay) for k=1,..., M.
We start with M = N and claim we can choose an admissible set {b_; < -+ <
b_y < by <--- < b} sothat J. C G} (the leftmost nodal interval) and J. C GF
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(the rightmost). Note that the ordering of the b;’s is different than for the a;’s. To
see that we can meet the two required conditions for admissibility if n is sufficiently
large, observe that by Lemma 4.2, the {a;} are as evenly spaced as we need, and
thus all the ¢;’s are as close to the center of G; as we wish (e.g., within 7;/100 of the
center). This implies that we can place all the points by, within 7;/20 of the centers
of G¥ or GF. We denote these centered intervals of length 7;/10 as J_ and J,.
e Step 5: If we perturb 7,, by moving only the points {ax} C G, to the points
{bx} C Gj, for a single j, then by (3.6) the new polynomial ¢; has a node that is
at least 10e" larger than the original one. By Lemma 4.3 the perturbed polynomial
has integral over If that is at least 2e™|I}| > 2exp(4logn)4/n® > 8n®. Since the
perturbed polynomial ¢; has the same sign over its entire central node, the area of
this central node of g; is at least the integral of ¢; over the subinterval I [ and hence
it satisfies the same lower bound.
e Step 6: We can obtain smaller areas over the central nodal interval by translating
each point by, by the same amount towards the center of GG;. Clearly such a translation
preserves the distance between the points, so they still form two clusters of diameters
at most 7;/10. The first contact between the b;’s and a;’s occurs when by hits ay,
(and b_y hits a_y at the same time). After this point, we stop moving by and b_y,
but keep translating the remaining points towards the center of ;. Note that the
remaining points form a (/N —1)-admissible set, since they are still as tightly clustered
as before (more so, since a point has been removed from each cluster). When any by,
reaches the corresponding point ax, we stop moving it (and b_g), but continue to move
the remaining clusters. We finish when b_; and b; reach a_; and a; respectively. At
that point we have returned to the original Chebyshev polynomial, which is bounded
above by 1 on G;, and hence has integral over this interval of at most |G;|. Since the
perturbed polynomial changes continuously with these movements, we can attain a
node with any area between |G;| < 472(logn)/n and 26N|],?j| > 8n?. The roots {b;}
that have not been matched with the corresponding a; still form a M -admissible set
for some 1 < M < N.

We choose root positions so that the large central node in G, of the perturbed

N/2

polynomial has area € - e™/? ~ ¢ -n?, where € > 0 was the jump size used to define g.

We can do this as long as |G| < e and V|| > - eN/2. By Lemma 4.1, the first
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condition holds if 7 is large enough. The second condition holds if [I}! | > € - e N/,

Again by Lemma 4.1, the nodal intervals I* of T,, have length |I}}] > =, so this is

N/2

true if & > e- e /2 or equivalently (since € < 1), if

2
N > 210g% =4logn —2log4 + 2loge > 4logn.

In particular, the node is large enough for our choice N = [4logn].
e Step 7: Let g be the polynomial obtained by making this perturbation in every G,
for j =1,..., K, and define p(z) = [* e /2. ¢(t)dt. We claim that the distortion

function R; corresponding to moving the roots from {a;} to {b;} in G; satisfies
(4.1) |R;(z)] <1 for ze[-1,1]\J;.

This is easy for  outside G, because by Part (2) of Corollary 3.3, we have 0 <
R;(z) < 1, for x outside [b_1,b1], and hence outside G;.

On the two components of G\ J;, the argument is only slightly more involved. We

can use Part (3) of Corollary 3.3 because of the condition we imposed in Step 3 that
the roots by < --- < by are an M-admissible set. Since |by —ax| > n; for 1 <k < M,
we can deduce that the distortion function corresponding to moving the pair ag, a_x
to by, b_y, satisfies |R| < 1 on an interval of length at least n;/4 to the left of b, and
to the right of b_j. These intervals, together with {z < b_;} and {z > b;} contain
all the points {b;} and thus cover all of G; \ J; (recall that J; = (b_y,b1)). This
proves (4.1). Therefore |p/| < e™/2 in the set X = [—1,1] \ UL, J; and hence the
total variation of p over all the components of X is less than 2e~"/2. In particular, p
is very close to constant on each connected component of X.
e Step 8: On each G, ¢ has a large central node where it equals ¢; (the perturbation
due to perturbations inside G; only) multiplied by the distortion due to each of the 2-
point perturbations in the other intervals Gy, k # j. The distortion on G; due to the
perturbations in Gy is at most 1+d 2 where d := dist(G;, G¢)/|Gx|. If we keep € (and
hence K) fixed, then maxj<,<x |G| tends to zero with n, but dist(G,, Gx) > 6/2,
independent of n. Thus d tends to infinity as n tends to infinity.

Increasing n if necessary, we can assume that the distortion on G; due to pertur-
bations in other G}’s is as close to 1 as we wish. To be a little more precise, We

have d ~ §/nlogn so the distortion due to all the 2-point distortions in G; in some
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different GG, is bounded above by 1 and below by
52
(1= )00 = (1= O ))Otes)

n?log”n
By taking logarithms, it is easy to check the right-hand side tends to 1 as n 7 co.

Thus the integral of p’ over G; is as close to e as we wish, say within €/ K, if n is
large enough. Then the anti-derivative p = [p’ = [ e "/?q equals g with an error of
at most 2e™/2 + ¢. The first term, 2¢="/2, is due to the intervals between the {G,},
and the second term, ¢, is due to adding up at most K errors of size ¢/ K due to the
distortions of the large nodes. By taking n (and hence N) large enough, we see that
we can take sup(_y q) |f — p| < 2e.
e Step 9: It is now easy to check that we can choose a sequence {p,,}5° that forms
a singular sequence converging to the continuous function f. Each p,, will have a

~Nm/2 of a perturbation ¢, of the Chebyshev polynomial

derivative that is a multiple e
T, , with N,,, = [4n,,] and the degrees n,, growing as quickly as we wish. Such
polynomials were constructed in Steps 1 to 8. Each p,, approximates a step function
gm With some number K, of “steps”, as described above, and we may suppose that
{G;”}]K:"i are the intervals where we performed the 2N,,-point perturbations on the
Chebyshev polynomial 7, . Let G™ = Uf:”iG;” be the union of these intervals. Note

that [p/ | < e /2 off G™. The length of G™ is

G| = Z G| < Kon(2Ny, + 1) max |1 ] = O (

J

K,, lognm)

Nim

We are free to choose a sequence {py, };° so that K, and n,, independently grow as

quickly as we wish, so we choose it so that K,, > m and n,, > K;j;. Then

m Ky logng,\ K, log K\ log K\ logm
- (Fem) —o (Rt ) o (Mam) ~o ().

since (logz)/z and (logz)/z? are both decreasing for > e. This is summable over

m > 1, so by the Borel-Cantelli lemma, almost every point of [—1,1] is in only
finitely many of the sets {G™}°. Thus |p/,,| — 0 almost everywhere. This proves the
first part of Theorem 1.2: every real-valued, continuous function f can be uniformly
approximated by singular sequence of polynomials with only real critical points.

e Step 10: To prove the second part of the theorem, we need to show that if f is

increasing, then we can choose p’ > 0 everywhere on [—1,1]. This is fairly simple:
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replace ¢ in the proof above by a ¢* and choose the points {b;} to represent pairs of

roots that move together. As before, we can choose the new root locations so that

[, ¢* = e™/2. We then finish the proof as before. O
J

The proof of Theorem 1.2 given above shows that any sum of finite, real-valued
point masses on [—1, 1] can be weakly approximated by a polynomial with only real
roots. If the point masses are all positive, then we can take the polynomial to be
nonnegative. Finite sums of point masses are weakly dense in all finite measures on

[—1,1], so we obtain the following consequence.

Corollary 4.4. If u is a finite Borel measure on [—1,1], then there is a sequence of
real polynomials {p,} with only real zeros so that p, (restricted to [—1,1]) converges

to p weakly. If v is positive, the polynomials {p,} can be chosen to be non-negative.

5. APPROXIMATION BY POLYNOMIALS WITH LARGE DERIVATIVES

In the previous section, we constructed polynomials that have large positive or
negative spikes near specified locations, but that are small elsewhere, so that their
anti-derivatives approximate a step function. Thus we could uniformly approximate
any continuous function f by a sequence of polynomials whose derivatives tend to
zero pointwise almost everywhere. In this section, we want to construct approxi-
mating polynomials whose derivatives tend to 4+o0o almost everywhere. Instead of
approximating step functions, the graphs of our polynomial approximants will re-
semble “sawtooth” functions, i.e., functions that are piecewise linear, and have large
positive slope on intervals that partition [—1, 1], but that have large downward jumps
at the endpoints of these intervals. See Figures 11 and 12 in Section 6 for such ap-
proximations of f(x) = |z| and f(z) = cos(27mz).

We will need the following estimate that roughly holds because the nodes of a

Chebyshev polynomial closely resemble rescalings of the nodes of cost:

1 1 2
<~ [ mpPwa < -+

5.1
(5.1) 2] J 2 24n?’

1
2
where I} is a nodal interval of T,,. Equation (5.1) is Equation (3.3) in [Bis24] (there
is a typo in that equation omitting the 1/|I}| in front of the integral, but the proof of

the equation with this additional normalization is correct). From (5.1) it is easy to
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deduce that p(z) = [*, T2(t) d¢ uniformly approximates the linear function (z +1)/2
on [—1,1] as n tends to infinity.

All the nodes of T? are positive, but if we separate a double root of T2 into two
separate single roots, we introduce a single negative node between these roots. By
moving these two simple roots further and further apart, we can create a very large
negative node (we also move some of the double roots of 72 to make room). The anti-
derivative p of this perturbed polynomial ¢ will look linear with slope 1/2 sufficiently
far from the perturbed roots, but it will have a sudden drop between the two simple
roots; the size of the drop depends on the area of the negative node. By replacing
T2 by a large positive scalar multiple of itself, and by placing throughout [—1,1]
very large negative nodes, we will be able to uniformly approximate any continuous
function f by a polynomial with the “sawtooth” structure described above. See
Figure 7 for a perturbation creating several negative nodes, all of the same size. In
this figure, the negative nodes are too small to counteract the effect of the smaller,
but more numerous positive nodes, and the anti-derivative resembles a linear function
with positive slope. In Figure 8, we have more carefully selected the negative nodes to
balance the positive ones, and the resulting polynomial resembles a constant function,
although its slope is very large at most points of [—1,1]. By choosing the size of
the negative nodes more carefully, we can make the graph of the approximating

polynomial approximate any Lipschitz function, as illustrated in Figures 11 and 12.

Proof of Theorem 1.4. As in the Section 4, we will break the proof into a series of
steps, although here we will omit listing them first, and simply start the proof. Several
of the steps here are very similar to those used in Section 4, and we will refer back to
those arguments when appropriate. We start with an important fact about Chebyshev

polynomials, that will be used in Step 9 below.

Lemma 5.1. Supposen is a large, positive integer and consider T,,, the nth Chebyshev
polynomial. Then |{x € [=1,1] : |T,,(z)] < 0} < 7d.

Proof. Recall from Section 1 that T,, = J((J~!)") where J is the vertical projection
from the unit circle onto [—1,1]. In this formula, J~! is interpreted as a 2 valued
function on [—1, 1] taking = to = +4y/1 — x2. Thus J~! maps the interval [—d, d] to

two symmetric arcs on T, each of length 2 arcsin(d), and centered at +i. Then taking
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FIGURE 7. Here we move six roots of ¢ (three pairs of double roots) to
form two roots of degree three each. Each such perturbation creates one
large negative node. A single such node is shown, on top. Several, equal
sized, nodes are shown in the middle picture. However, these negative
nodes are “too small”: the bottom figure shows the anti-derivative and
the upward trend means the positive nodes dominate the negative ones.
This is adjusted in Figure 8.

nth roots maps these two intervals to 2n intervals with the same total length, and
the projection J maps these arcs 2-to-1 to n intervals, while deceasing the length
of each interval. Thus the preimage of [—4,d] under T,, has total length at most
2arcsin(d) < 7d. O

e Step 1 (reduction to flat functions): Since Lipschitz functions on [—1, 1] are
dense in continuous functions, it suffices to assume f is Lipschitz. Moreover, if
Theorem 1.4 holds for a function, then it also holds for any positive scalar multiple

of f, so we may further assume that f is 1-Lipschitz. Finally, if M is a large positive
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FicUuRE 8. Here we have adjusted the odd degree roots in Figure 7
so the each negative nodes has area equal to the mass of the following
interval of positive nodes. The anti-derivative is shown at bottom.
Nodes are larger near £1, too account for the shorter nodal intervals
near the endpoints. The negative nodes take up about 20% of the
length here, but this percentage can be made arbitrarily small by taking
n and N larger.

number, and if we can approximate f/M to within €/M by a polynomial p so that
p > M~/2 except on a set of length M~/4, then M - p will approximate f to within
¢ and we have (Mp)' > M2 except of a set of length M~'/4. So it actually suffices
to assume f is (1/M)-Lipschitz, and to approximate f by polynomials with these
estimates. Fix a large value of M, say M > 10.

e Step 2 (subdivide [—1,1]): Fix ¢ € (0,1/2) and set J = 2| M/e|. Note that
M/e < J < 2M/e. Define J + 2 equally spaced points —1 = 59 < 81 < ...8; <
sj11 = 1. The distance between adjacent points is 2/(J + 1) < 2/J < 2¢/M. Since
fis (1/M)-Lipschitz, it varies by at most (1/M)(2¢/M) = 2¢/M? over each segment
S; = [sj,8j41] for j = 0,...,J. We will make perturbations of 7 in very small
intervals (size at most O((logn)/n)) around the J points sq,...s;.

e Step 3 (selecting the roots of the perturbed polynomial): Suppose n is a
large positive integer (chosen later depending on € and M), and for each j =1,... J,

let r; be a root of T}, that is closest to s;; r; is unique unless s; happens to be the
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center of a nodal interval; in that case, let s; be either endpoint of that interval. (As
before, we suppress the dependence on n in the notation.) Set N := 4[logn], and let
H; be the union of the NV 4 1 nodal intervals of T, to either side of ;. Thus H; is
the union of 2N + 2 nodal intervals, and there are 2N + 1 roots of 7}, interior to Hj;
each is double root of T2. We let n; be the minimal length of a nodal interval in H,
and we let H' and HJ* denote the leftmost and rightmost nodal intervals in H;. As
in Step 3 of the proof of Theorem 1.2, we may assume (2N + 2)n,/|H;| is as close to
1 as we wish, if n is large enough, depending only on J (hence only on € and M).
We label the 2N + 1 roots of T, inside H; as a_y < --- < a9 < --- < ayn. Note
that there is a point ag now, and that ag = ;. (We ought to also label the a’s with
a superscript j, to indicate which H; we are talking about, but this should always
be clear from context, so we omit it to simplify notation.) As in Step 4 of Section 4,
we define corresponding points {b,} C H; that we move the roots at {a;} to (again,
we omit adding a superscript j to the b’s). However, there are 2N 4 2 such points,
instead of 2N + 1, since the double root of T at ag will be split into two separate

simple roots by, bt . We assume these points satisfy
by < - <b<by <bf <b <--<by.

As in Step 4 of the proof of Theorem 1.2, we also assume the points {b.}"y are

admissible in the sense that they satisfy two conditions:

(1) The set {b_n,...,b_1,by } is contained in an interval J_ of length at most
n;/10 to the left of ag, and the set {b3,b1,...,by} is contained in an interval
Jy of the same length, but to the right of ay.
(2) We have $(b_x+by) = ¢, := 3(a_p+a) for k=1,... N, and 5(by +b) = ao.
These conditions allow us to apply our estimates for 2-point distortion functions.
To start with, we choose admissible points {bx} so that J_ C H} and J, C H/.
We can do this for exactly the same reason as described in Step 4 of the proof of
Theorem 1.2: if n is large enough, then the a;’s are as evenly distributed as we wish,
so the ¢;’s are all as close to ag as desired, and hence the b,’s can be placed as close
to the centers of H}' and H* as needed.
e Step 4 (defining perturbed polynomials): For each k£ with 1 < |[k| < N we
will move the double root of T? at aj to a double root at by. But for k = 0, the

double root of T? at ay is split into two single roots, b, and bj. Note that b, and
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by are the closest to ag among the {b;}. Since these are the only roots with odd
multiplicity, these are the only points where the perturbed polynomial changes sign.
Thus J; = (by,b5) C H; is a nodal interval of the perturbed polynomial, and it is
the only nodal interval in H; where this polynomial is negative. Let g; denote the
perturbation of T obtained by moving the roots of T to the points {b;} only in
a single interval H;. Let ¢ be the polynomial obtained by perturbing the roots in
all the intervals H;, 7 = 1,...J. Then ¢ has J negative nodes, one in each interval
H; for j = 1,...,J. Each perturbed polynomial g¢; is equal to 72 multiplied by
(4N + 2) 2-point distortion functions. The polynomial ¢ will be the product of T
and J - (4N + 2) different 2-point distortion functions. Since each 2-point distortion
function tends towards 1 as we move away from the perturbed roots, we will have
q ~ T? away from H = U{ H;. We will make this idea more precise below.

e Step 5 (definition of p): We define p as the anti-derivative of ¢ so that p(—1) =
f(=1). Unlike the previous section, we do not multiply ¢ a scalar (we used e N2 in
Section 4). Thus p will approximate a function of slope 1/2 except near the intervals
{H,}, where it decreases rapidly due to the large negative nodes of ¢.

e Step 6 (distortion far from the H;’s): Set p := ¢/M. The distortion function
for the perturbations inside H; tends to 1 away from the interval H;. In particular,
for any g > 0, we can choose a C' < oo (depending on p) so that the distortion
function satisfies 1 — p < R(z) < 1 at points x that are outside ﬁj = (2C + 1)H;
(where (2C'+1)H; denotes the interval concentric with H; but (2C'+1) times longer).
We want to estimate the size of C' in terms of .

By Part 4 of Lemma 3.3, the distortion function R due to a moving a single pair
of points inside H; satisfies 1 — C? < R < 1 at points of X =[-1,1]\ f:]j. Because
Y- n~? is summable, and because the intervals H; are approximately evenly spaced,
the product of distortion functions for moving one pair of roots in each H; satisfies
1 —aC™2 < R(z) < 1, for some fixed a > 0 and all z € X. Since 4N + 4 pairs
of points are moved in each Hj, the distortion function corresponding to moving all
4N + 4 the roots satisfies 1 — (aC~2)*+ < R < 1. If we want R > 1 — p, solving
for C' leads to the inequality C? 2 N/u = 4[logn| - M/e. Therefore, if we fix C' to
be a sufficiently large multiple of [/(logn)M/e], then for ¢ € X, we have

(L= )T2(E) < qlt) S T2(2).
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For two points < y in the same connected component of X , we therefore have
€

=) [ 1<) - pte) = [Cawae< [0

xT

and hence, by (5.1), as n " oo we have

Ip(y) — p()] ~ [5(y — 2)]| < 7 + O,

e Step 7 (distortion near H;): Outside the negative nodal interval J;, the distor-
tion function R; due to the perturbations inside H; satisfies |R;| < 1, for exactly the
same reasons as in Step 7 of Section 4. Thus |q| < T outside these intervals, and
so the variation of p = [ ¢ over (2C + 1)H; \ J; is bounded by the length of this set
(since |T,,| < 1), which is at most (2C + 1)|H;| = O(y/(logn)M /e(logn)/n). This
clearly tends to zero as n tends to infinity (and € and M are held fixed).

e Step 8 (choosing the size of the negative nodes): By Equation (3.6), that
gives exponential growth of the nodes, we can choose the perturbation inside each
H; so that f 7, 4 has a large negative value, up to size —e™|I ,?J |, and we can achieve
smaller values by translating the points {b} towards the center of Hj, just as de-
scribed in Step 6 in Section 4. In this case, we stop moving the double root at b,
k # 0 when it reaches a;. Thus b(jf are the last points to stop moving when they
reach ag; when this happens, we have returned to the unperturbed T?. We choose
the perturbation so that

/J q; = —% sk = sp—1] + (f(sk) = f(s8-1))-
i
Note that this implies ij ¢ < —3% sk — sk—1] since f is (1/M)-Lipschitz and hence
1 1

f(Sk) - f(Sk:—l) < M(Sk - Sk—l) < é_l(sk - Sk—l)

if M > 4. A negative node of this size can be obtained if N is large enough, i.e., by
(3.6) we need eN\I,%\ > s, — sp_1 = 2/(J 4+ 1). Similar to Step 6 of Section 4, this
holds for our choice N = 4[logn|, if n is so large that logn > log M — loge.

e Step 9 (conclusion): We have now proven that for any 1 < j < J, p(s;) approx-
imates f(s;) as closely as wish, if n is large enough. Moreover, as noted in Step 3,
f varies by at most €/M? over S; = [s;, s;41]. On S, the polynomial p is decreasing
(due to the node J;), then increases by at most 1/J (since p’ < 1 between .J; and

Jj+1) and then decreases again (due to J;;1). Therefore the variation of p over S; is
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at most O(1/J) = O(e/M) if n is large enough. Thus |f — p| < O(e¢/M) on all of
[—1,1] if n is sufficiently large.

We have also shown that p’ = ¢ is larger than M ~/? except inside H= Uj]?[ and
near the zeros of ¢ that are outside this set. Outside H, we have |q| > (1 — p)|T},| >

IT,,|/2, so by Lemma 5.1, |g| > M~'/? except on a union of intervals of total length
at most O(M~/4). On the other hand, UjPNIj has total length bounded by

O(J-(2C+1)-N/n) =0 <(M/e) - /(logn)M/e - (log n) /n) ,

(this is J, times the total number of nodal intervals in Uj}NI ;, times the maximal pos-
sible length of a nodal interval, as given by Lemma 4.1). Clearly this estimate tends
to zero as n increases, so it is less than A ~/* for n large enough. To complete the
proof of Theorem 1.4, take a sequence of polynomial approximants {p,} constructed

as above, and so that the corresponding values {M,,} satisfy > M, Y4 < 50. Then
applying the Borel-Cantelli lemma, as we did in the proof of Theorem 1.2, gives the

result. O

Our methods can be adapted to prove the following result.

Theorem 5.2. Suppose Ei, E,, and E3 are disjoint measurable sets in I. If f is
real-valued and continuous on I, then there is a sequence of polynomials {p,} with

only real critical points so that

(1) on Ey, {p),} converges almost everywhere to 0,
(2) on Es, {p),} converges almost everywhere to +oo

(3) on Es, {p),} converges almost everywhere to —oc.

We shall leave the details to the reader, but the basic idea is as follows. Fix € > 0
and split [—1, 1] into finitely many intervals so that f varies by less than € over each.
Within each interval that intersects F5 in more than three quarters of its length, we
perturb the roots to form large positive nodes; in the intervals that hits 3 at least
three quarters of their length, we form large negative nodes. In both cases the nodes
are chosen with the same very large area (positive or negative). We then rescale
the perturbed function so the absolute mass of each interval is approximately its
length. The remaining intervals each hit F; in at least half their length. On these,

the renormalized polynomial is very close to zero. Finally, we introduce large nodes
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near the endpoint of intervals whose total mass is the sum of the change in the target
function f over the interval to the left, minus the mass (positive or negative) of the
interval to the left. The anti-derivative p of resulting polynomial will approximate f
uniformly and p" will be close to 0, —oo or +o00 on large measure on the three specified
sets respectively. Taking appropriate sequences formed in this way and applying the

Borel-Cantelli theorem proves Theorem 5.2.

6. SOME NUMERICAL EXAMPLES

The proof of Theorem 1.2 is illustrated in Figure 9. The top picture shows a
degree 500 polynomial p approximating a step function. The bottom picture shows
a graph of log,, [p'| with the vertical range limited to [—12,1]. The polynomial is
approximately 10-Lipschitz, but outside the intervals where we move the roots of the
Chebyshev polynomial, [p/| is everywhere less than 1073, and is less than 10™* except

near +1. At each “jump” of the function we have moved 10 roots.

15+
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05+

0
_05 | | | | | | | | | |
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
07

_57

A0

CL O A A N NI
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8 1

FIGURE 9. A degree 500 polynomial p approximating a step function
and a plot of log,, |p’|. The polynomial has large slope near the “jumps”
but small slope elsewhere. We have moved 5 pairs of points per jump.
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To simplify the computation of this example, we made the new nodes about the
same height, without adjusting for the width of the nodal interval. Hence |p'| has
about the same maximum at each jump, but the steps of p are smaller near the end-
points because the nodal intervals are shorter. As described in the proof of Theorem
1.2 above, this can be adjusted so that the jumps all have same height.

Figure 10 shows an approximation to a Cantor singular function. We have squared
Tys50 and moved some roots to new roots of degree six. The steps have derivatives

that are almost four orders of magnitudes larger than in the intervening intervals.

0.8
06
041+
02+
0 | | | | | | | | | |
-1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
102
100 n ﬂ ﬂ n ﬂ u
102
(0 || |
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

FIGURE 10. An increasing, degree 900 polynomial approximating
a Cantor singular function. Below is a plot of the derivative with a
logarithmic vertical scale.

To prove Theorem 1.4, we constructed polynomials ¢ = p’ that are bigger than some
large constant M on most of [—1, 1] but have even larger negative nodes supported on
very small length. Thus the anti-derivative p looks like a “sawtooth” i.e., p resembles
a function of the form Mz — g(x) where g is a step function. See Figures 11 and
12 for some examples where we have implemented the idea to approximate |x| and

cos 2mx using two polynomials of degree 1600. The approximations are very rough;
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even higher degrees are necessary to get close approximations by polynomials with

large, positive derivatives on a large set.

-50 1

-100 |

-150

-1 -0.5 0 0.5 1

FIGURE 11. A polynomial p of degree 1600 approximating f(z) = |z,
and a graph of p’. The derivative p’ is given by squaring Tgoy and then
moving certain groups of adjacent roots to form large negative nodes
that mostly cancels the positive nodes.
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FIGURE 12. A polynomial approximation of cos(27z), and a graph of
p’. The derivative is large and positive on a set of large measure (close
to measure 1) but is balanced by even larger negative spikes supported
on small length.
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