CONFORMAL REMOVABILITY IS HARD

CHRISTOPHER J. BISHOP

ABSTRACT. A planar compact set E is called conformally removable if every home-
omorphism of the plane to itself that is conformal off F is conformal everywhere,
and hence linear. Characterizing such sets is notoriously difficult and in this paper,
we partially explain this by showing that the collection of conformally removable
subsets of S = [0, 1]? is not a Borel subset of the space of compact subsets of S with
its Hausdorff metric. We give some similar results for other classes of removable
sets and pose a number of open problems related to removability and conformal
welding, using the language of descriptive set theory.

1. INTRODUCTION

Several well known problems in classical complex analysis have remained open for
nearly a century and seem intractable. Two of these are to characterize the compact
planar sets that are removable for conformal homeomorphisms, and to characterize
conformal welding homeomorphisms among all circle homeomorphisms. The purpose
of this paper is to partially explain the difficulty of these problems by proving that
the collection of conformally removable sets is not a Borel subset of the space of all
planar compact sets with the Hausdorff metric. Much of the paper is a survey of the
relevant ideas from complex analysis and descriptive set theory, and a recasting of
known results into new forms. However, we also present a new result regarding two
special classes of removable Jordan curves, and we discuss several new open problems
at the interface of classical complex analysis and descriptive set theory. We start by
recalling some relevant definitions.

A planar compact set E' is called removable for a property P if every function with
property P on Q = E¢ = C\ E is the restriction of a function on C with this property.
For example, if P is the property of being a bounded holomorphic function, then E is
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removable iff every bounded holomorphic function on its complement extends to be
bounded and holomorphic on the whole plane (and hence is constant by Liouville’s
theorem). A standard result in many introductory complex variable classes is the
Riemann removable singularity theorem, that says single points are removable in this
sense. While there are a wide variety of properties that could be considered, most
attention has been devoted to the following cases:

e H*>-removable: P = bounded and holomorphic,

e A-removable: P = H*> and extends continuously to F,

e S-removable: P = holomorphic and 1-to-1 (also known as conformal or schlicht),
e ('H-removable: P = conformal and extends to a homeomorphism of C.

For an excellent survey of what is known about each of these classes, see Malik
Younsi’s 2015 paper [64].

The basic problem is to find “geometric” characterizations of removable sets. For
example, Xavier Tolsa has given a characterization of H*-removable sets in terms
of the types of positive measures supported on the set (see Section 2). Ahlfors and
Beurling [1] gave a characterization of S-removable sets as “NED sets” (negligible sets
for extremal distance; the precise definition will be given at the end of Section 7). On
the other hand, although there are various known sufficient conditions and necessary
conditions, e.g., [30], [32], [33], there is no simple characterization of A-removable
or C' H-removable sets. Thus it appears that characterizing these sets is “harder”
than characterizing H*-removable or S-removable sets. The following is a precise
formulation of this idea (Gs and Borel sets will be defined later in this section; for

the moment think of Gy as “relatively simple” and not Borel as “very complicated”).

Theorem 1.1. Let S = [0,1]? be the unit square in C and let 2° denote the hyperspace
of S, i.e., the compact metric space consisting of all compact subsets of S with the

Hausdorff metric. Within this metric space, the collection of

(1) H*-removable subsets is a G,

(

2)
(3) A-removable subsets is not Borel,
4)

(

Thus, in some sense, removability for conformal homeomorphisms is distinctly more

S-removable subsets is a Gs,

C H -removable subsets is not Borel.

complicated than for bounded holomorphic functions. It turns out that the proof of
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parts (1) and (2) are fairly elementary, and that parts (3) and (4) follow from well
known results in descriptive set theory and complex analysis.

Given a closed Jordan curve I' with bounded complementary component {2 and
unbounded component ©*, there are conformal maps f : D = {|z|] < 1} — Q and
g :D* = {|z] > 1} — Q*. Both these maps extend homeomorphically to the circle
T =0D = {|z] =1}, s0 h = g1 o f is a homeomorphism of the circle to itself. Such a
map is called a conformal welding. A single curve I' can give rise to several weldings
due to different choices of the conformal maps f and ¢ but all such maps are related
by compositions with Mobius transformations of the circle. Similarly, two curves that
are Mobius images of each other will have the same set of associated weldings. In fact,
this is true for any image of a curve I' under a homeomorphism of the sphere that is
conformal off T'. (For brevity, we call this a C'H-image of I'.) For a C'H-removable
curve, such a map must be a Mobius transformation, so conformally removable curves
(modulo Mé&bius transformations of the 2-sphere) are uniquely determined by their
welding (modulo Mébius transformations of the circle).

It is very tempting to claim that a non-removable curve is not uniquely determined
by its welding, but this is still open; it is possible that there is some non-removable
curve I' so that any C'H-image of I' is also a Mobius image. Very likely there is
no such curve. Indeed, an even stronger conjecture is that any conformally non-
removable curve has a C'"H-image of positive area. Combined with the measurable
Riemann mapping theorem (e.g., Theorem V.B.1 of [2], or Theorem 5.3.2 of [4]), this
conjecture would imply that every non-removable curve has a C' H-image that is not
a Mobius image. We will say more about these problems in Section 10.

It is known that not all circle homeomorphisms are weldings, e.g., examples are
given in [9] and [49], and these examples are described in Section 10. Thus the map
from curves to circle homeomorphisms is not onto. However, weldings form a “large”
subset in several senses. For example, conformal weldings are dense in all circle home-
omorphisms. This is easy for the uniform metric, since every circle diffeomorphism is
a welding, but they are also dense in a much stricter sense: for any € > 0, any circle
homeomorphism can be altered on set of length ¢ to become a conformal welding.
See Theorem 1 of [9]. Moreover, weldings generate all circle homeomorphisms, i.e.,

any circle homeomorphism is the composition of two conformal weldings, [55]. It
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follows from a result of Pugh and Wu that conformal weldings contain a residual set
in the space of all circle homeomorphisms (see Section 10 for details). However, it is
not known if weldings are a Borel subset of circle homeomorphisms. It follows from
general results about Borel sets (to be stated more precisely in Section 3), that if
the map from curves to weldings were injective, then conformal weldings would be
a Borel subset of circle homeomorphisms. Thus the question of whether conformal
weldings are a Borel subset is closely linked to understanding the failure of injectivity
for this map, and it seems likely that injectivity fails exactly for C'"H-non-removable
curves, creating a strong link between these problems. Moreover, the collection of

non-removable curves is quite complex, as indicated by the following result.

Theorem 1.2. As above, let S = [0, 1]? be the unit square in C and let 2° denote the
hyperspace of S, i.e., the compact metric space consisting of all compact subsets of
S with the Hausdorff metric. Within this metric space, the collection of A-removable
closed Jordan curves is not Borel. Similarly, the collection of C'H-removable Jordan

curves 1s not Borel.

Next, we define a few terms that we have been using. Given a compact set K, we

define the Hausdorff distance between compact subsets K, K5 as
dy (K, Ks) = inf{e: Ky C Ky(€), K1 C Ks(e)},

where K;(e) = {z : dist(z, K;) < €} is the open e-neighborhood of K, j = 1,2. This
defines a compact metric space consisting of all compact subsets of K, called the
Hausdorff hyperspace of K and denoted 2% (e.g., see Theorem A.2.2 of [10]). In this
paper, we mainly deal with three examples of K: the unit interval I = [0,1] C R, the
unit square S = [0,1]> C R? = C, or the Riemann sphere S. The collection of Borel
sets is the smallest o-algebra containing the open sets (a o-algebra is closed under
countable unions, countable intersections and complements). An F}, set is a countable
union of closed sets; a G is a countable intersection of open sets (this terminology
originates with Hausdorff in 1914). These are the lowest level of a hierarchy of Borel
sets, indexed by the countable ordinals. A Borel map is one for which the preimage
of any open set is a Borel set.

Analytic sets (also known as Suslin sets) are continuous images of Borel sets, but

they need not be Borel themselves (more about this later). The complement of an
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analytic set is called co-analytic. The sets in parts (3) and (4) of Theorem 1.1, and
in Theorem 1.2, turn out to be co-analytic complete, a condition we will define in
Section 5, and that implies that they are non-Borel in a strong sense.

The removable sets in the first three cases of Theorem 1.1 all form o-ideals of
compact sets, i.e., they are closed under taking compact subsets and under compact
countable unions. The subset property is obvious, and the fact that a compact set
that is a countable union of compact removable sets is also removable is proven in
[64] for each of these three classes. The dichotomy theorem for co-analytic o-ideals
(e.g., Theorem IV.33.3 in [35]) then says these collections must be either G5 or co-
analytic complete in 2°. Theorem 1.1 indicates which possibility occurs in each case.
It is not known whether the C'H-removable sets form a o-ideal; indeed, it is not even
known if the union of two overlapping C'H-removable sets is C'H-removable. If the
sets are disjoint, then this is true, but is remains open even if both sets are Jordan
arcs sharing a single endpoint. The proof of Theorem 1.1 shows that the collection
of C'H-removable sets is co-analytic complete, and this fact adds some additional
evidence that these sets may form a o-ideal.

Although it is a basic theorem of descriptive set theory that every uncountable
Polish space X contains analytic and co-analytic sets that are not Borel (see Section
4), it is very interesting to obtain “natural” examples. For example, if X = C([0, 1])
(continuous functions on [0, 1] with the supremum norm) the following subsets of
functions are all known to be co-analytic complete, and hence non-Borel:

e everywhere differentiable [47],

e differentiable except on a finite set [57] or countable set [27],

e nowhere differentiable [46],

e cverywhere convergent Fourier series [3].

For the space C([0,1]) of sequences of continuous functions on [0, 1] the space CN
of everywhere convergent sequences is co-analytic complete, as is the space CNy of
sequences converging to zero everywhere. See Theorem IV.33.11 of [35] by Kechris. A
famous result of Hurewicz [31] says that the collection of countable, compact subsets
of I =0, 1] is co-analytic but not Borel in 2! with its Hausdorff metric. See Theorem
5.6. Other known examples of non-Borel subsets of 27 are:

e sets of uniqueness [36],
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e sets of strict multiplicity [34].

A closed set E C T is a set of uniqueness if any trigonometric series that converges
to zero everywhere off £ must be the all zeros series. E is a set of strict multiplicity
if it supports a measure whose Fourier coefficients tend to zero; the Fourier series of
such a measure shows that its support is not a set of uniqueness in a strong way.
These particular examples have an intimate connection to the foundations of modern
mathematics: Cantor showed that finite sets are sets of uniqueness, and the problem
of extending this to infinite sets led him to the creation of set theory. For more about
this fascinating episode in the history of mathematics, see e.g., [17], [18], [44], [58].
For further “natural” examples of non-Borel sets from analysis and topology, see [6]
by Howard Becker.

This note was prompted by email discussions with Guillaume Baverez, in which he
proposed a possible characterization of C'H-removable Jordan curves in terms of their
conformal weldings. I doubted such a concise criterion could be given, and eventually
I found a counterexample to his conjecture, but the interchange raised the question
of quantifying the difficulty of the problem. This paper was written in the hope that
gathering the basic facts needed from descriptive set theory might be of interest to
fellow complex analysts, and perhaps motivate some of them to attack other variants
of these problems, e.g., those discussed in Sections 7, 10 and 11.

I thank Alex Rodriguez for carefully reading the manuscript and locating many
typos and small errors that I had missed (any remaining mistakes are my own re-
sponsibility). Also many heartfelt thanks to Dimitrios Ntalampekos for many detailed
and very helpful comments that improved this paper in various ways. In addition
to spotting a number of typos and minor errors, he suggested shorter proofs of some
statements, and strengthened the statement of Theorem 1.2. The original version of
this result only claimed that A-removable curves formed a non-Borel set, but Dim-
itrios observed that the same proof also works for C'H-removable curves, if we make
use of a result of Jang-Mei Wu [63] that I was unaware of. This is a substantial

improvement of the paper, answering a question posed in the original version.



CONFORMAL REMOVABILITY IS HARD 7
2. H*-REMOVABILITY IS “EASY”

As we shall explain below, identifying removable sets isn’t exactly easy in the usual

sense, but in terms of descriptive set theory the collection of such sets is pretty simple.

Lemma 2.1. The collection of H*®-non-removable subsets of S = [0,1]* is an F,

subset of 2°. The H*®-removable sets are therefore a G5 subset.

Proof. Suppose E C [0,1]? is non-removable for H>°. Then there is a non-constant,
bounded holomorphic function f defined on the complement of E. Near infinity, f
has a Laurent expansion
1 Co
f(z):co+;+;+...
and this has at least one non-zero coefficient ¢, for some k > 1. If ¢; = 0, the function
f() = 2(f(2) —c0) = 2+ 2 +
Z 2z
is also bounded, non constant and holomorphic off E. Continuing in this way, we see
that we eventually obtain a bounded holomorphic function on 2 = C\ E that has
non-zero coefficient ¢; in its Laurent expansion.
Let X, be the collection of non-removable sets in [0, 1]> whose complements support
a holomorphic function whose absolute value is bounded by 1 and whose Laurent
coefficient satisfies |c;| > 1/n. We claim X, is a closed set in 2°. Fix n and suppose
{K;} C X,, are compact sets converging to K in the Hausdorff metric. Assume f; is
the holomorphic function on K¥ attesting to its membership in X,,. Each compact
disk D in the complement of K is eventually contained in the complements of the
K; for j large enough. Since |f;| <1 for all j, Montel’s theorem (e.g. Theorem 10.13
in [45]) implies that we may extract a subsequence that converges to a holomorphic
function fp on D. Covering K¢ by a countable union of such disks and applying a
diagonalization argument, we may extract a subsequence converging to a holomorphic
function f bounded by 1. Applying the Cauchy integral formula to a fixed circle
surrounding [0, 1]* we see that the Laurent coefficients of f; converge to the Laurent
coefficients of f and hence |c;(f)| > 1/n. Thus K € X,,. Since every non-removable

set is in some X,,, the collection of all non-removable sets is an F, in 2°. O

The proof that S-removable sets form a Gy is very similar, but now the trick of

replacing f(z) by z(f(z) — o) to get |c1| > 0 might not give a 1-to-1 map. Instead,
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we may assume the map is conformal off F and has an expansion f(z) =z +¢1/z +
co/2* + ... so that ¢ # 0 for some k. Thus it suffices to prove each member of the
countable family K, ; where |¢x| > 1/n is closed. We proceed as before, but now
we justify the use of Montel’s theorem slightly differently. Since f; is univalent on
{]z| > 2} and is normalized so that f’'(co0) = 1, Koebe’s distortion theorem (Theorem
[.4.1 of [24]) implies f;({|z| > r}) contains {|z| > 4r} for sufficiently large r. Thus f;
is uniformly bounded on {|z| < r} for any r > 0, and hence is uniformly bounded on
any compact disk D C C. Thus we can apply Montel’s theorem on D, and complete
the proof as before.

Of course, just because H>-non-removable sets are Borel in 2° does not mean
that it is an easy task to find an elegant characterization of them. Indeed, it is a
deep result of Xavier Tolsa [61] that F is non-removable for bounded holomorphic

functions if and only if it supports a positive measure p of linear growth, i.e.,
(2.1) u(D(w,r)) < Mr,

(for some M < oo and all z € R? and 7 > 0) and it has finite Menger curvature in

the sense that
(22) 2= [ [ [ e dnte)dutdu) < .

where c(x,y, z) is the reciprocal of the radius of the unique circle passing through x,
y and z (linear growth implies (du)® gives zero measure to the set were two or more

of z,y, z agree).

3. ANALYTIC SETS

A topological space X is called Polish if it is separable (has a countable dense set)
and has a compatible metric that makes it complete (Cauchy sequences converge).
Standard examples include Euclidean space R™, the continuous functions on [0, 1] with
the supremum norm, C([0,1]), and the collection of compact subsets of a compact
set K C R" with the Hausdorff metric. Another important example is the Baire
space NV of infinite sequences of positive integers equipped with the metric given
by d((an), (b,)) = €™, where m = max{n > 0: ay = b, for all 1 < k < n}. One

can show NV is homeomorphic to the irrational numbers (with the usual topology)
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although they are different as metric spaces (one is complete and the other is not).
Every Polish space is the continuous image of the Baire space (Lemma B.1.2, [10]).

As stated in the introduction, the Borel sets in a topological space form the smallest
o-algebra (i.e., closed under complements and countable unions and intersections)
that contains the open sets. A map is called Borel if the inverse image of any open
set is a Borel set. If follows that the preimage of any Borel set under a Borel map is
also Borel, and hence that the composition of Borel maps is a Borel map.

If X is a Polish space, then A C X is called analytic if there is another Polish
space Y and a Borel set E C X x Y so that A is the projection of F onto A, i.e.,

A={x € X :3Jy €Y such that (z,y) € E}.

Clearly, any Borel set B C X is a projection of the Borel set B x X C X x X so
Borel sets are clearly analytic. However, it is known that any uncountable Polish
space contains an analytic set that is not Borel (see Lemma 4.1), and several explicit
examples were already mentioned in Section 1.

Analytic sets are closed under countable unions and intersections (see [35] or Ap-
pendix B of [10]) but are generally not closed under taking complements, thus they
do not usually form a o-algebra. If A C X is analytic, then A° = X \ A is called
co-analytic. Borel images and preimages of analytic sets are also analytic. In de-
scriptive set theory, analytic sets are denoted 31 and co-analytic sets TI (using
light-faced characters refers to something else). These form the simplest elements
of the projective hierarchy of sets, much as closed and open sets are the simplest
sets of the Borel hierarchy. Analytic and co-analytic sets can be quite complicated,
e.g., although every uncountable analytic set contains a perfect subset, Godel [28]
showed that this question for co-analytic sets is undecidable (similar to his results
for the Axiom of Choice and the Continuum Hypothesis). Similarly, all analytic sets
are Lebesgue measurable, but proving general projective sets are measurable requires
additional axioms, e.g., the assumption that certain “large cardinals” exist, e.g., see
Steel’s article [59].

There are several equivalent characterizations of analytic sets, including (see Sec-
tion 11.3 of [11])

(1) A is the projection of a closed set in X x NN,

(2) A is the continuous image of NV,
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(3) A is a continuous image of a Polish space,
(4) A is the continuous image of a Borel subset of a Polish space,

(5) A is the Borel image of a Borel subset of a Polish space.

In comparison, Borel subsets of a Polish space are characterized as follows (see The-
orem 11.12 of [11])

(1) a continuous 1-to-1 image of NN,
(2) a continuous 1-to-1 image of a Borel subset of a Polish space,
(3) a 1-to-1 projection of a closed set in X x NN/

(4) both a co-analytic and analytic set (see below).

Analytic sets are also known as Suslin sets in honor of Mikhail Yakovlevich Suslin,
who proved that a set is Borel if and only it is both analytic and co-analytic. While
a research student of Lusin in 1917, Suslin constructed a Borel set in the plane whose
projection on the real axis is not Borel, contradicting a claim in a 1905 paper of
Lebesgue (Cooke [17] refers to Lebesgue’s error as “one of the most fruitful mistakes
in all the history of analysis”). Suslin died of typhus in 1919 at the age of 24, having
published just one 4-page paper while alive, and one posthumously with Sierpinski.
His work was further developed by Lusin!, Sierpinski? and others, and Suslin’s legacy
remains very active a century later.

To prove that the conformally non-removable subsets of S = [0, 1]? form an analytic

subset of the hyperspace of S, we first record a few simple facts.

Lemma 3.1. For any Borel map f : X — Y between Polish spaces, the graph of f
1s a Borel set in X x Y.

Proof. 1t suffices to prove the complement of the graph is Borel. Since Y is separable,
there is a countable basis { By} for the topology. Thus given any z € X and y € Y
so that y # f(x) there is a basis element By, so that f(z) € By and y & By. In other
words, (x,y) is contained in the Borel product set f~'(By) x (Y \ Br) C X x Y and

n 1936 Lusin was the victim of a political attack that included charges of taking credit for
Suslin’s work and publishing too much in Western journals. Lusin survived the incident and was
officially rehabilitated in 2012. See [21], [42]. However, Lusin’s thesis advisor, Egorov, died in 1931
following a hunger strike in prison after similar attacks.

2According to [17], although Sierpinski was technically under arrest in Moscow during World War
I as an Austrian citizen, he was allowed to participate in the academic life of Moscow University.
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this set is disjoint from the whole graph of f. Thus the complement of the graph of

f is a countable union of Borel sets, and hence it is Borel itself. 0

Lemma 3.2. Suppose K C C is a compact set and suppose A is an analytic subset
of 2% (i.e, A is a collection of compact subsets of K ). Then the collection of compact
subsets of K that each contain some element of A (i.e., the collection of supersets of

A) is also an analytic subset of 2.

Proof. Since A is analytic, it is the continuous image of some Polish space X, say
A = f(X). Define a map ¢ : X x 2K — 2K x 2K — oK by (2. F) — (f(2), E) —
f(x) U E. The first map in the composition is continuous since f is assumed to be
continuous. The second map is continuous since it is easy to check that taking unions
is a continuous map from 2% x 25 — 2K Thus ¢(X x 2%) is the continuous image
of a Polish space (because products of Polish spaces are also Polish), and hence it is
an analytic subset of 2. However, the image is exactly the collection of all possible
unions of sets in A with compact subsets of K, and hence it is precisely the collection

of all supersets elements of A (compact subsets of K containing an element of A). [

For a compact set K C C, we say U C K is relatively open in K if U = KNV for
some open set V C C.

Lemma 3.3. Suppose X is a Polish space. Suppose K C C is compact and that each
relatively open U C K is associated to a closed set X(U) C X. Moreover, assume
that No X (Uy) = X(UUy,) for any collection of relatively open subsets {U,} of K.
Then the map A from points of X to compact subsets of K defined by

Ax—K,=K\U{U:zeX(U)},
is a Borel map from X to 2.
Proof. Note that if V' C W are relatively open sets, then VU W = W, and hence
XV)oX(V)NnXW)=X(VUW)=X(W),

so our map has a “reverse monotone” property. For each closed set £ C K and ¢ > 0

consider the open ball in 2X

B(E,e)={F C K :dy(F,E) < €}
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These form a basis of the topology of the hyperspace 2%, so it suffices to show

preimages of such sets are Borel. Each such set is a countable union of closed balls
B(E,0) ={F C K : dy(F,E) <6},

for some sequence of d’s tending up to e. Thus it suffices to show that sets of the
form A~Y(B(E,§)) are Borel, i.e., {x € X : dy(K,, E) <4)} is a Borel subset of X.

Let N(E,§) = {y € C : dist(y, F) < 6} and similarly for N(K,,d). It is easy to
check that the condition dy(K,, F) < ¢ holds for some x € X if and only if z is in
the intersection of the sets Y1 = {z : K, C N(E,§)} and Yo = {z : E C N(K,,d)}.
Hence it suffices to show both Y; and Y5 are Borel.

First consider Y;. We claim that € Y; if and only if x € X (U) where U =
{z : dist(z, ) > 0}. Suppose z € X(U). Then K, is in the complement of U, and
hence every point of K, is within distance § of E, i.e., K, C N(E,J). Hence x € Y;.
Conversely, suppose = € Y;. Then any point y € U is strictly more than distance ¢
from E and so y cannot be in K. Therefore y is in one of the relatively open sets (call
it U,) that was subtracted from K in the definition of K, and hence z € X(U,).
Thus z C Nyey X (Uy) = X (UyerU,). Since every point of U is in this union, we
have U C UyepUy, so Nyep X (U,) C X(U) by the reverse monotone property. By
assumption, X (U) is a closed subset of X, so Y] is closed, and hence it is Borel.

Next we consider Y5. The complement X \ Y5 consists of points z so that F
contains some point y that is strictly more than distance 6 from K, i.e., K, misses
some closed disk D' = {z : |z € C : |z — y| < 6}. Thus the compact set K, is a
positive distance from D’ and hence it also misses some closed disk D D D’ that is
centered at a rational point of the plane and that has rational radius > ¢§. For each
point z € DN K, z ¢ K, implies x € X (U,) for some relatively open set U, C K
containing z, hence x € N,epnr X (U,) = X (U.epnrxU,) = X(Vp) where Vp is some
relatively open set containing D N K but disjoint from K. For each rational closed
disk chosen in this way, the corresponding set X (Vp) is closed. If x € X \ Y3, then
it is in one of these closed sets and hence X \ Y3 is contained in the union of these
countably many closed sets. Conversely, if z is in some X (Vp), then K, omits D and
hence every point of K, is strictly more than distance ¢ from some point of E. Thus
X\ Y, =UpX(Vp) is F,, and hence Y3 is also Borel, as desired. O
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Next we want to specialize to the case when X is the space of homeomorphisms
of the 2-sphere to itself that are holomorphic off S = [0,1]? and normalized to be
h(z) = z+ O(1/|z|) at infinity. The space of homeomorphisms of a compact Polish
space (like the 2-sphere) is always a Polish space itself, but in this case we can be more
explicit and take the metric d(f,g) = sup|f — g| + sup|f~! — g !|, where distances
are measured in the spherical metric. It is not completely trivial to find a countable

dense subset, but we sketch a proof, leaving a few details for the reader to verify.

Lemma 3.4. Let X denote the collection of homeomorphisms of the 2-sphere S* to
itself that are holomorphic off S = [0,1]* and normalized to equal z + O(1/|z]) at
infinity. Then X contains a countable dense subset, i.e., any element of X can be

uniformly approximated by elements of this subset.

Proof. First, by replacing f(z) by f(rz) where r > 1 is very close to 1, we may
assume f is also holomorphic on a neighborhood of 95, and thus each edge of 05
maps to an analytic arc under f. For n a positive integer, consider the vertices
Vo of a (1/n) x (1/n) square grid G,, inside S. If n is sufficiently large, then the
points f(V,, N 0S), taken in order around 0.5, define the vertices of a simple closed
polygon P, and the Riemann map g from the exterior of S to the exterior of P (fixing
oo) uniformly approximates f. By perturbing the vertices of this polygon slightly,
we may assume these vertices have rational coordinates, and that the map g still
uniformly approximates f. The fact that g uniformly approximates f uniformly on
compact sets outside S follows from the Carathéodory kernel convergence theorem
(e.g., Theorem 8.11 of [45]), and uniform convergence up to the boundary follows
from Rado’s theorem (e.g., Theorem I1.5.2 of [29)]).

Next consider the vertices of the grid G, that are in the interior of S. Choose
n < 1/n, and within an n-neighborhood of each interior vertex v, perturb f so that
f(v) has rational coordinates, and the new map (still called f) approximates the
old one. For each edge e of GG,, connecting two vertices v and w of GG,, we want
to approximate f(e) by a finite polygonal path from v to w whose vertices all have
rational coordinates, and then map the edges of GG, to their corresponding polygonal
arcs. If n is large enough, then for any fixed ¢ > 0 the image under f of each square

in G, has diameter less than €/2. Thus we if can approximate each arc f(e) to within
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€/4 by a polygonal arc, then any homeomorphic extension of f that maps the edges
of G,, to their corresponding polygonal arcs will approximate f to within e.

If n is large enough and 7 is small enough, we may assume all the image vertices
are distinct, and are pairwise separated by a distance of at least some 6 > 0. For
each vertex of G,, let C, denote the circle of radius §/100 around f(v). Each interior
vertex is the endpoints of four edges ey, es, €3, ¢4 of G,,, and for each j = 1,2, 3,4, we
choose the last point p; of e; on C, (here, the “last point” means the last time we
hit the circle as we travel along e; from v to the other endpoint of e;). We can then
connect v to each of the four points py, p2, p3, p4 by line segments that meet only at v.
We do the same for vertices on 0.5, but now there may only be two or three adjacent
edges to consider.

We then approximate the subarc of e; from p; to the corresponding point ¢; on
the circle around the other endpoint w of e;. These subarcs are all compact and
pairwise disjoint, so they are all a positive distance from each other. Thus we can
approximate each in the Hausdorff metric by pairwise disjoint polygonal arcs, all
lying outside all of the circles C),. Having done this, we can then slightly perturb the
arcs to assure that the vertices all have rational coordinates (we do not change the
coordinates corresponding to images of vertices of GG,,, as these are already rational).

Now map each edge of the grid GG,, homeomorphically to the corresponding polyg-
onal using the map that agrees with our previous choices on the vertices of GG,, and
that multiplies arclength by a constant factor. Finally, extend this map on the edges
of G,, to a homeomorphism of each square of G,, to the corresponding polygonal re-
gion defined by the images of the edges, e.g., using conformal maps, we can reduce to
extending a circle homeomorphism A to a homeomorphism of the interior disk, which
is trivial by the “radial extension” z — h(z/|z|) - |z|]. Our mappings on adjacent
squares agree on the common boundary segments, so they define a homeomorphism
of S that agrees on 0S5 with our holomorphic approximation. The final homeomor-
phism might not have the precise normalization z + O(1/z) near infinity, but it is
very close to this, and we can impose this form with a small dilation and translation.
The resulting collection of maps is countable, since each map is determined by a

finite collection of rational numbers and a forced renormalization. We leave to the
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reader the verification that the inverse of the homeomorphisms we have constructed

approximate the inverse of f. O

Lemma 3.5. The CH-non-removable subsets of S = [0,1]* form an analytic subset

of the hyperspace of [0,1]2. Thus the removable sets are co-analytic.

Proof. Let X be the space of homeomorphisms of the 2-sphere to itself that are
holomorphic off S = [0,1]? and normalized to be h(z) = z + O(1/|z]) at infinity.
For each open set U C C let X(U) be the elements of X that are holomorphic on
U. Since uniform limits of holomorphic functions are holomorphic, this is a closed
subset of X. Moreover, if h is holomorphic on each set in a collection {U,}, then it is
holomorphic on the union so X (U,U,) = Na X (U,). All the functions in this set may
be holomorphic on a strictly larger set, e.g., if the union has removable complement,
but this equality still holds, and simply gives an example where X (V') = X (W) even
if V' is strictly contained in W.

For each h € X, and let U, = C\ K}, be the largest open set so that h is holomorphic
on some neighborhood of every z € U, (alternatively, Uy, is the interior of the set of
points where h/(z) exists). Lemma 3.3 says that h +— K}, from X to Y = 25 is a
Borel map, and Lemma 3.1 says its graph {(h, K;)} is a Borel set in X x Y. Hence
the projection onto the second coordinate gives an analytic set A = {K}, : h € X}
(projections of Borel sets are analytic). By definition, a compact subset of K is
conformally non-removable if and only if it contains a non-empty set in A. Removing a
point from an analytic set gives another analytic set, so by Lemma 3.2 the supersets of
non-empty elements of A form another analytic set. Thus conformally non-removable

sets are analytic in 2. 0
Lemma 3.6. The A-removable subsets of S = [0,1] are co-analytic in 2°.

Proof. This is exactly the same as the proof of Lemma 3.5, except that now we
work in the Polish space of all continuous functions on the Riemann sphere that are
holomorphic off [0, 1]?, normalized to have supremum norm 1. This space is complete
with the usual supremum metric, and a countable dense set is not hard to construct,
e.g., one can copy the proof of Lemma 3.4 up to the point where we approximate

by a function taking rational values on the vertices of the grid G,,, then triangulate
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these vertices and and use affine maps on the triangles. (This is much easier than
before, because we do not need to produce 1-to-1 maps.)

As before, the map sending each such function to the complement of the set where
it is holomorphic is a Borel mapping of this Polish space into 2°, and the projection
of its graph onto the second coordinate gives an analytic subset of 2. Taking all
supersets of all non-empty projections gives all A-non-removable sets, and shows this

collection is analytic. O

4. ANALYTIC NON-BOREL SETS EXIST

The following is standard result, but we include the simple proof for completeness.
We follow the argument in Section 11.5 of [11].

Lemma 4.1. NY contains an analytic set that is not Borel. Thus the complement of

this set is co-analytic and not Borel.

Proof. This is a diagonalization argument. We claim it that suffices to show there is
an analytic subset X C N¥ x N so that every analytic subset A C NN occurs as a
slice A= X, ={z € NV (z,y) € X}, for some y. Given such a set X, then

B={reN':(z,2) € X}

is the projection of the intersection of X with the (closed) diagonal of N¥ x NN and
hence is the continuous image of an analytic set, and therefore is itself analytic. The
complementary set B¢ = {z € NV : (z,z) ¢ X} is automatically co-analytic, and if

B¢ were also analytic, then it would be equal to a slice X, of X for some y. Thus,
Xy=A{z:(z,y) e X} =B ={x: (z,2) & X}.
However, in this case
yeB = (yyeX = yeX,=DB°

and
yeB = Wy ¢X = yéX,=B" = yeBbB,
so assuming either y € B or y € B¢ both lead to contradictions. Thus B¢ can’t

be analytic, and hence neither B nor B¢ is Borel (since Borel sets are closed under

complements, and all Borel sets are analytic). Thus we have reduced proving the
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existence of a non-Borel analytic set to finding an analytic set X C NY¥ x NN which
has every analytic subset of NV as a slice.

First we show this is possible for closed slices. The idea is that we can encode any
closed set by the list of open basis elements it misses. More precisely, if Y is a Polish
with a countable basis { By} for the topology, and if y € Y, then let S(y) C N be the
set of all natural numbers k with y ¢ Bg. Then set T'(y) C NY to be the collection
of all the sequences with elements in S(y), i.e., T(y) = S(y)~.

Consider the set Z = {(y,5) CY x NV : y € Y,s € T(y)}. First, we claim that
every closed set F' C Y occurs as a slice of Z. To prove this, let S(F') C N be the set
indices k of basis elements By missing F. Fix the second coordinate of Z to be some
sequence s € NY whose union of elements is exactly the countable set S(F). If (y, s)
is any point in this slice, then we must have s € S(y), and so y misses every open
basis set By that misses F' (and possible others), so y € F. Conversely, if y € F,
then S(F) C S(y), so s € S(F)Y C S(y)Y, and hence (y, s) is in Z. This proves every
closed set F' C Y occurs as a slice of Z.

Next, we claim Z is a closed subset of Y x NN, Consider ¢, — yin Y and z, € T(y,)
with 2, — 2 in NY. We need to show z € T'(y). If y,, — y and y,, € By, for large n,
then y ¢ By, since By is closed. Hence an integer is in S(y) if it is in S(y,) for all
sufficiently large n (the converse need not be true). Since z, — z in NV, it converges
coordinate-wise, and so if the kth coordinate of z, is in S(y) for all large enough n,
the same is true for z, i.e., z € T'(y), as desired, proving Z is closed.

Finally, to obtain every analytic subset of N as a slice, we apply the previous
argument to Y = NN x NN to get a closed set X C Y x NN = (NN x NV) x NV 50 that
every closed subset of (NY)2 occurs as a slice of X. Hence every analytic subset of
NY occurs when we project X onto the first coordinate. Projections of analytic sets
are analytic, so projecting X onto the first and third coordinates gives an analytic

subset of NN x NN, whose first coordinate ranges over all analytic subsets of NN, [

Note that this implies the cardinality of the analytic subsets of a Polish space is at
most the cardinality of NV, i.e., the same as R, the continuum c. Since single points
are analytic sets, the analytic subsets of R have cardinality exactly c¢. In particular,

the collection of all Borel subsets of R also has cardinality c.
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5. CO-ANALYTIC COMPLETE SETS

A co-analytic subset A C X of a Polish space is called co-analytic complete if for
any co-analytic set B of NY there is a Borel map f : NY¥ — X so that f(y) € A iff
y € B,i.e., B= f7!(A). Thus membership in any such B can be reduced to checking

membership in A.

Lemma 5.1. If f : X — Y is a Borel map between Polish spaces, if A is co-analytic,

and if f~Y(A) is co-analytic complete in X, then A is co-analytic complete in'Y.

Proof. If B C NN is co-analytic, then there is a Borel map g : N¥ — X so that
B = g7} f7*(A)), since f~}(A) is co-analytic complete. Thus h = f o g is a Borel
map from NY to Y and B = h™1(A). Hence any co-analytic set B in NY is a Borel

preimage of A, and hence A is co-analytic complete. O
Lemma 5.2. A co-analytic complete set cannot be Borel.

Proof. Let B C NN be a non-Borel, co-analytic set (such exist by Lemma 4.1). If
A C Y is co-analytic complete, then, by definition, there is a Borel f : N¥ — Y so
that B = f~!(A). But Borel inverse images of Borel sets are Borel, so A cannot be

Borel since B is not Borel. O

Therefore a simple strategy for proving A C X is not Borel is to find a Borel map
f:Y — X so that B= f~}(A) C Y is a known co-analytic complete set in Y. If A
is co-analytic, then Lemmas 5.1 and 5.2 imply A is not Borel. If A is not co-analytic,
then it is automatically not Borel (all Borel sets are both analytic and co-analytic).
To make this work, we need one co-analytic complete set to start from. A standard
choice is the collection of well-founded trees, which we define next.

Let N* be the set of finite sequences of natural numbers (including the empty
sequence). A tree T is a subset of N* that is closed under removing the final element,
i.e., if a finite sequence is in T, so is every initial segment, including the empty
one (this labels the root vertex of T'). An infinite branch of 7" is an element of
NN, all of whose finite initial segments belong to 7. The set of all infinite branches
of T is denoted [T (this is also sometimes called the boundary of 7" and denoted
0T, but we will not use this alternate notation). A tree is well-founded if it has no

infinite branches. Finite trees are obviously well-founded, and the infinite set of finite
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sequences (n,n — 1,n —2,...,1) with n € N, together with all initial segments of

these sequences, form an infinite well-founded tree. See Figure 1.

FiGURE 1. An example of a well-founded tree. It is an infinite tree,
but has no infinite branches.

The sequence spaces 2% and NN each have a product topology which is metrizable

with the metric
o0

d({ar}, {i}) =" - |ax — b

P (1+|ak—bk|)'

Since N* is countable and a subset can be identified with its indicator function,

any tree can be identified with a point of 2V, i.e., the Cantor set of infinite binary
sequences. In fact, the set of all trees corresponds to a closed subset of 2V, that we
will denote X7. Thus Xr is a Polish space itself (it is also a Cantor set, since no
tree is isolated in the induced topology). However, we will show that the collection
of well-founded trees is co-analytic complete, and hence non-Borel, in this space. To

prove this, we will use the following result (Lemma 11.22 of [11]).

Lemma 5.3. Every closed set in NN is of the form [T] for some tree T. For every
analytic set A C NN there is a tree T so that a = (a1, as,...) € A if and only if there

is some b= (by,by,...) € NN s0 that the “weaving map” satisfies
W(CL, b) = (al, bl, as, bg, Ce ) € [T]
Proof. The first part is straightforward (this argument was suggested by Dimitrios

Ntalampekos, shortening the original proof). Suppose K C NN is closed, and let T

be the tree of all finite initial segments of all elements in K. By definition, each
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element of K corresponds to an infinite branch of the tree T. Conversely, if z =
(x1,...,2,,...) € N¥ corresponds to an infinite branch of T', then we wish to show
that z € K. By the definition of 7', for each fixed n € N we can find a sequence
y(n) € K whose first n entries agree with (z1,...,x,) (because each initial segment
has “children”). Thus, y(n) converges to x in the product topology of N¥. Since K
is closed, we have x € K.

To prove the second part of the lemma, note that N¥ x NV is homeomorphic to NV

by the 1-1, continuous map that interweaves sequences:
W (al,az,...) X (bl,bg,...) — (al,bl,a2,b2,...).

Thus, if A has the form given in the lemma, then it is the projection onto the first
coordinate of the closed set W~1([T]) € NN x NN and hence A is analytic (note that
W=([T]) is closed since [T is closed and W is a homeomorphism).

Conversely, if A is analytic, then it is a continuous image A = f(NV) and hence A is
the projection of the closed set (f(z),z) € NN x NV (recall that graphs of continuous
functions are closed sets). Since W is a homeomorphism, the W-image of this closed
graph gives a closed set in NY. Applying the first part of this lemma gives a tree T'

corresponding to A that satisfies the interweaving condition in the lemma. 0

Note that we have actually proved something stronger than was claimed: A is
analytic if and only if there exists a tree T so that A is the projection of W~1([T]) to
the first coordinate. Also note that the weaving map W : NN x NN — NN used above
can also be defined as a map W : NN x N* — N* by truncating {a,} as follows:

W({ak}i)o? {bk}?> = (a17 bla a2, b27 <oy Qny, bn) S N*

We will use this definition in the proof Lemma 5.5 below.
Lemma 5.4. The well-founded trees are a co-analytic subset of Xr.

Proof. 1t suffices to prove the ill-founded trees (those containing an infinite branch)
form an analytic set. Consider the set Z = {(T,2)} C Xr x NN such that z is
an infinite branch of 7. The projection of Z onto the first coordinate gives all ill-
founded trees, so these trees will form an analytic set if Z is closed in Xy x NN
Suppose T, =+ T € Xp and z,, — = € NV in the product topologies. Then any

initial segment of x is an initial segment of z,, for all sufficiently large n. Thus this
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segment is a vertex of T,, for all large enough T, and hence also of T". Since every
initial segment of x is a vertex of T', x is an infinite branch of T. Thus Z is closed,

ill-founded trees are analytic and well-founded trees are co-analytic. 0
Lemma 5.5. The well-founded trees are a co-analytic complete subset of Xr.

Proof. Recall that X7 C 2% denotes the set of trees. By Lemma 5.4, the well founded
trees are co-analytic, so it suffices to verify the other part of the definition: given any
co-analytic set B C NV, there is a Borel map of NY to X so that B is the inverse
image of the well founded trees.

Let A = B°. By definition, A is analytic, so by Lemma 5.3 there is a tree T so
that a = (ay,as,...) € A iff W(a,b) € [T] for some b = (by,by,...) € NV, Using
T, we define a map NN — X7 as follows. For a = (ay,a,...), we let T(a) denote
the collection of all finite sequences {b;}} (including the empty sequence) so that
W(a,b) € T (W as defined just before Lemma 5.4). Clearly T'(a) is a tree. Moreover,
a sequence a € N belongs to B = A¢ if and only if W(a,b) & [T] for all b € N
Thus a € A if and only if T'(a) has no infinite branches, i.e., if and only if T'(a) is a
well-founded tree.

To finish the proof, we verify that the map a — T'(a) is Borel. Recall that X, C 2N,
and that a basis for the topology consists of specifying a finite initial segment of a
sequence, and allowing the remaining elements to be free. The inverse image of such

a basis element is the collection of all infinite sequences a € NV, so that

(1) interweaving the initial elements of a with the specified elements of the basis
gives a finite string in 7', and
(2) there is some continuation of the specified elements to an infinite sequence so

that interweaving is a branch of T

Thus a is simply the sequence of odd coordinates of branches of T' that passes through
the specified vertex. The collection of all such sequences is a closed set in NY. Thus
the inverse image of a general open set in 2" is a countable union of closed sets, and

hence the mapping a — T'(a) is Borel. O

Theorem 5.6 (Hurewicz, [31]). The compact countable subsets of I = [0,1] are

co-analytic complete in 2!.
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Proof. First we must show this collection is co-analytic or, equivalently, that the
uncountable compact subsets of I form an analytic subset of 2/. We use the fact that
every compact, uncountable set K supports a non-atomic probability measure u, and
hence the function f(x) = u([0,z]) is continuous, increasing, f(0) =0, f(1) =1 and
is constant on each connect component of [0, 1]\ K. Consider the set Z = {(K, f)} C
2 x C([0,1]), where f and K are related as above: f is continuous, f(0) =0, f(1) =1
and f is constant on the complementary components of K. Projection onto the first
coordinate gives all uncountable compact sets, so it suffices to show Z is closed. Thus
we need to show that if K,, — K in the Hausdorff metric, and if f,, — f uniformly,
then f is constant on the complementary components of K. However, any two points
x < y in such a component define a compact interval [z, y] that is a positive distance
from K, and hence is outside of K, for large enough n, and thus f,(z) = f.(y) for
all large enough n. Taking limits gives f(x) = f(y), as desired.

Next we show the collection of compact, countable sets is co-analytic complete. By
Lemma 5.1, it suffices to show that there is a continuous map from the space of trees,
X7, into 27, so that the image of a tree T is a countable subset of I if and only if T'
is well-founded. For each n =1,2,... let A, = {z € [0,1] : 525 < |z — 5| < 5=}

2n+1
Then the A, are all disjoint and each set consists of two compact intervals. For any

S C N, define
1
As={= .
S { 9 } U nLEJS A
This is a compact subset of [0,1], and equals {1/2} if and only if S is empty.
Suppose we are given a tree T. The root vertex (labeled by the empty string) is
associated to Ey = Iy = [0,1]. In general, suppose FE, is a compact subset of [0, 1]
whose connected components are a countable number of points labeled by strings
of length < n, and a countable number of non-trivial closed intervals I labeled by
strings of length n. All strings that occur as labels of intervals in E,, correspond to
labels of vertices in level n of T, and for each such label, 2" intervals in FE,, will have
that label. To construct F, 1 from E,, we keep every point component from FE,, (and
leave the label the same) and replace each interval component J; labeled by a string
s of length n by Lg(Ag), where S is the set of integers that can be appended to S to
give a length n+1 string in 7" (i.e., these correspond to the edges leading out of vertex

s), where Ag is as above, and where Lg is a linear map from J to Js. Since each A,
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consists of two intervals, each nth generation interval with a given label gives rise to
two intervals in the next generation with identical labels. Let Er = NE,. Since the
E,, are nested compact sets, this is a non-empty compact subset of [0, 1].

If T has an infinite branch, then following this branch through the construction
gives a Cantor subset of E, hence F is uncountable. Conversely, if E' is uncountable,
then E'NJ; must be uncountable for one of the countably many connected components
of Fy. Then E N .Js; must be uncountable for one of the countably many components
of F5 contained in J;. Continuing in this way, we obtain nested, non-degenerate
components J; O Jo D J3 D ... whose labels form an infinite branch of T, so T is
not well-founded. It is easy to check that the map from trees to sets, described above,
is continuous: if two trees are very close, then the construction of the corresponding
sets is the same, except inside a union of intervals, each of which have small length,

so the sets are close in the Hausdor{l metric. O

The endpoints of all the components of E, in the previous proof are rational
numbers. Thus we could reformulate the result to say that compact subsets of Q N I
are co-analytic complete in 2/ (one first uses Lemma 3.2 to show that the collection
of compact sets containing at least one irrational number is analytic in 2/, so the
compact subsets of Q is co-analytic).. Theorem 5.6 also gives a rather concrete
example of a non-Borel set in [0, 1]. Let {r,} be an enumeration of Q N[0, 1] and for
K € 2! define

FE)=> 3™
rn@K
Clearly f is 1-to-1 (since distinct sums of powers of 3 are distinct). The sets {K :
f(K) > a} are easily checked be open in 27, so f is Borel. Thus

X ={f(K): K cQn|0,1] and is compact } C [0,1]

cannot be Borel. An earlier “explicit” non-Borel set, given in terms of continued
fractions expansions, is due to Lusin [43]

Dimitrios Ntalampekos pointed out that the existence of a non-Borel set depends
on the Axiom of Choice, and he asked where we have used this. In fact, we have
utilized it from the beginning, as many of the basic facts about analytic sets depend
on choice, e.g., Suslin’s proof that a set that is both analytic and co-analytic must

be Borel. Without choice, it is consistent with Zermelo-Fraenkel set theory that the
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real numbers are a countable union of countable sets, in which case every subset of
the reals is Borel. For a discussion (and citations) of “how much” choice is needed
to construct non-Borel sets, see the Math Overflow discussion [13]. Also see [22] for

a related development of measure theory without the Axiom of Choice.

6. A-REMOVABLE SETS ARE CO-ANALYTIC COMPLETE
We start with a well known fact from complex analysis.
Lemma 6.1. If E C [0, 1] has positive length, then it is H*®-non-removable.

Proof. If E is an interval, then we simply apply the Riemann mapping theorem to
conformally map the complement of E (on the sphere) to the unit disk. This gives a
non-constant bounded holomorphic function on the complement.

The general case was proven by Ahlfors and Beurling in [1] (or see Section 1.6 of
Garnett’s book [23]). Note that if w = u + v

Flw) = /Ezcizw :/Et—(zt—i-iv)
/ (t —u+iv)dt
g (t—u—1w)(t—u+iv)

= / L Al R / it
E(t—u)2+v2 E(t—u)2+/02
is holomorphic on = E°, has imaginary part in [—m, 7|, and Laurent expansion
((E)/z+c2/2* + ... near infinity. Thus G = exp(F/2) takes values in the right half-
plane, (G —1)/(G + 1) maps 2 holomorphically into the disk, and one can compute

its leading Laurent coefficient to be ¢; = ¢(E)/4 > 0. O

Extending this result from subsets of R to subsets of graphs I = {(z, f(z)} C R? of
real Lipschitz functions f was a major breakthrough by Alberto Calderén [14], when
he proved the L” boundedness of the Cauchy integral operator on Lipschitz graphs.
This led to many important developments in in harmonic analysis and geometric
measure theory over the last fifty years, including Tolsa’s result discussed in Section
2. For some of the related history, see [20], [50], [60], [62].

The following is stated and proved on page 117 of Carleson’s 1951 paper [15]:

Theorem 6.2. If £y, E5 C [0, 1] are compact and if Ey has positive Lebesgue measure,
then E = E; X Es is A-removable iff E is countable.
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Proof. For completeness, we recall the proof of both directions. If E is countable, the
removability of F; x Fj is due to Besicovitch [7], but we give a short proof suggested
by Dimitrios Ntalampekos that foreshadows remarks in the last section of this paper.

If ) is countable, then F; x [0,1] is a compact set that is the countable union of
vertical slits. Each isolated slit is removable; this is a simple consequence of Morera’s
theorem (e.g. Theorem 4.19 of [45]). Removing those isolated slits, one ends up with
a new compact set E] x [0,1]. The set E7, if non-empty, is also countable, so must
have isolated points. Then one proceeds with transfinite induction on the rank of the
countable set F; to get the removability.

Conversely, if Fy has positive length, then by Lemma 6.1 there is a non-constant
bounded analytic function f on the complement of i F with a positive Laurent coeffi-
cient ¢;. If £ is uncountable, then it supports a non-atomic, positive, finite measure
. Therefore F(z) = [ f(z + x)dp(x) is continuous on the sphere and holomorphic
off E = FE; x E,. The fact that

1 1 1 1 1 x

z—x:;+(z—x_;):; z2(z—x)’

implies F' also has non-zero Laurent coefficient ¢; and hence is non-constant. There-

fore F is A-non-removable. O

Corollary 6.3. The A-removable compact subsets of S = [0,1]* are co-analytic com-

plete in 2°, hence not Borel.

Proof. We already know this set is co-analytic by Corollary 3.6. To prove co-analytic
completeness, by Lemma 5.1 it suffices to show that the mapping £ — E x [0, 1]
is continuous between the respective Hausdorff metrics and hence reduces the set of
countable compact subsets of [0,1] to the set of A-removable sets. Since the former

is co-analytic complete by Theorem 5.6, so is the latter. 0

7. CH-REMOVABLE SETS ARE CO-ANALYTIC COMPLETE

The following is due to Fred Gehring [25] in 1960. We include a proof for the

reader’s convenience.

Lemma 7.1. For compact sets E C [0,1], E x [0,1] is CH-non-removable if and

only if E is uncountable.
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Proof. First suppose E is compact and uncountable. Then E supports a a positive,
finite, non-atomic measure p. By restricting p to an appropriate subset Ey of zero
Lebesgue measure and multiplying by an appropriate constant we may assume g is
singular to Lebesgue measure, is supported in an interval J = [a,b] C [0, 1], and
has total mass equal to half the length of J. For a fixed constant ¢ € [0, 1] define
h.(z) = z outside J and

tula) =z +e ([ autn - 252,

inside J. It is easy to check this is a homeomorphism that is linear with slope 1 — 3

on each component of J \ Ey. On the other hand, h. maps Ej to a set of length
cl(J)/2 > 0. Let g(y) = max(0, 3 — [y — 1|) and define

F(x,y) = (hg(y)@)ay)'

See Figure 2. This is a homeomorphism of the plane that is the identity off J x [0, 1],
and for any component K of J\ Ey, F is a skew linear map on K x [0, 3] and K x [3,1]
with uniformly bounded dilatation. Thus F' is quasiconformal off Ey x [0, 1]. It is not
quasiconformal on the whole plane because the zero length set Ey x {y} is mapped
to a set of positive length for each 0 < y < 1, and thus Ey x [0, 1] is a set of zero area
that is mapped to positive area; this is impossible for quasiconformal maps, see e.g.,
[2]. Using the measurable Riemann mapping theorem, we can find a quasiconformal
mapping ¢ of the whole plane so that ¢ o F' is conformal off E x [0,1] but not
quasiconformal everywhere, hence not conformal everywhere. Thus E x [0, 1] is CH-
non-removable.

Conversely, note that if £ is C'H-non-removable with witness f and if zy € F, then

9(z) = (f(2) = f(2))/(z = 20)

is continuous, non-constant, and bounded on the plane and holomorphic off F, so
E is also A-non-removable. Thus A-removable sets are also C'H-removable. Hence
by Theorem 6.2 if E is countable, then E x [0,1] is C'H-removable. (One could
also directly apply the same transfinite induction argument as given in the proof of
Theorem 6.2). O

Corollary 7.2. CH-removable sets in S = [0,1]% are co-analytic complete in 2°.
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FiGUurRe 2. If F is a Cantor set, then there is homeomorphism h
of C that is quasiconformal off £ x [0,1] and maps E x [0,1] to a
set of positive area. This can’t happen if E has zero length and h is
quasiconformal on the whole plane.

The proof is the same as for A-removable sets, except using Gehring’s result in
place of Carleson’s.

Recently, Dimitrios Ntalampekos [48] has suggested a characterization of C'H-
removable sets that is closely related to the characterization of S-removable sets due
to Ahlfors and Beurling. Given two continua FjandF; inside an open planar domain
), we consider the family I of rectifiable paths connecting F} to F». Givenset E C C,
we can consider the sub-family ' of I' consisting of paths that miss E. If for every
Q, Fy, and F, as above, the extremal length of I'g is the same as the extremal length
of I', then we say F is negligible for extremal distances, or “NED” for brevity. Ahlfors
and Beurling proved that a compact set E is S-removable if and only if it is NED
(see Theorems 6 and 9 of [1]).

Ntalampekos calls a set CNED (countably negligible for extremal distances) if T
always has the same extremal length as the sub-family consisting of paths that hit £
in at most countably many distinct points (we do not care how often each point of £
is hit by a path). In [48] he shows that several known families of C'H-removable sets
are special cases of CNED sets, and conjectures that closed CNED sets are the same
as C'H-removable sets. Corollary 4.4 of [48] says that if a closed set X C C is CNED,
then for any ¢ > 0, and for any two points x,y € R?, there is a path v connecting z

and y of length at most |z —y|+ € so that yN X is countable (ignoring multiplicities).
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This clearly fails if X = E x [0,1], and £ C R is uncountable. Thus the proof of
Lemma 7.2 and the remarks following Lemma 5.2 show that the collection of CNED
sets is not Borel in 2%, where S = [0, 1]2. Moreover, it would be co-analytic complete

if it is co-analytic. Is this the case?

8. A-REMOVABLE JORDAN CURVES ARE CO-ANALYTIC COMPLETE

A case of particular interest among compact planar sets are the closed Jordan
curves. Let Homeo(X,Y) C C(X,Y) denote the 1-to-1 continuous maps of X into
Y. Tt is easy to see that this subset is neither open nor closed in C'(X,Y’). However,
amap f: T — Cis 1-to-1 if and only if any two disjoint closed dyadic intervals have
disjoint images (an open condition) and hence Homeo(T, C) is a G set in C(T, C).

We can think of closed Jordan curves as elements of Homeo(T, C)/Homeo(T, T),
i.e., modulo re-parameterizations. Thus f, g € Homeo(T, C) are equivalent if f = gop

for some p € Homeo(T, T). We can define a metric between equivalence classes as

d([f],[9]) = inf{[[f — g o pll : p € Homeo(T, T)},

although Jordan curves are not complete in this metric. A complete metric on Jordan
curves separating 0 and oo is described by Pugh and Wu in [52], by choosing a
particular parameterization of each curve. They attribute the idea to Thurston: one
takes conformal maps of S\T to S\T" normalized to fix 0 and oo respectively and that
have positive derivative at these points, and then use the supremum metrics between

conformal maps.

Theorem 8.1. The collection of A-removable Jordan curves contained in S = [0, 1]?

is co-analytic complete in 2°.

Proof. As in previous proofs, we first verify that the collection is co-analytic by
showing its complement is analytic. Consider the set Z of pairs (v, f) where 7 is a
non-removable closed Jordan curve and f is a continuous function on the 2-sphere
that is holomorphic off v and has Laurent coefficient ¢; = 1 (to confirm that it is
non-constant). Again, as before, it suffices to show Z is closed, so it suffices to show
that if v, — v and f, — f then f is holomorphic off . This follows since uniform
limits of holomorphic functions are holomorphic, and any closed disk that misses v

will miss 7, for all sufficiently large n.
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As noted in Lemma 5.1, it suffices to construct a Borel map from some Polish space
into the space of Jordan curves, so that the preimage of the A-removable curves is a
known co-analytic complete set B. We will take the Polish space to be the set of trees
Xr (defined in Section 5), and the preimage set to be the collection of well-founded
trees. The latter is co-analytic complete by Lemma 5.5.

To simplify some formulas, we work in [—1,1]? instead of [0, 1]>. We start with
a map from trees to compact subsets of [—1,1] that maps well-founded trees into
countable sets, using a slightly different map than we did in the proof of Theorem
5.6. For n € N, we define

1

A, ={x: 2 +

and for S C N
Ag = {il} ulJ A cl-11).
4 nes

This is similar to what we did in the proof of Theorem 5.6, except that now the
pairs of intervals A,, converge to two different points £1/4, instead of a single point.
However, the rest of the construction is the same, and associates to each tree T" a
compact set Er that is countable if and only if 7" is well-founded. Recall that each
string s of length n is associated to 2" intervals which we label 7, j = 1,...2". We

assume these are numbered left to right.

Next we construct a Cantor set K = N, K, C Ky = [—1,1] of positive Lebesgue
measure where Ko D Ky D --- D K and each K, is a union of 2" disjoint closed
intervals which we denote {K*}, k = 1,...,2". We assume that for a fixed n,

the components {K*}2" are numbered left to right and that their maximum length
(,, = maxy, | K¥| tends to zero with n. For the current proof, we may assume that for
each n, every K¥ has length ¢, = 27"71(1 4 1/n), so K has length 1/2.

Our Jordan curves will be constructed using templates that are closed sets G,
where the index J € {K*} is one of the component intervals in the construction of
the Cantor set K. The largest J is J = [—1,1] = Ky and we denote G[_1,1) by Go
for brevity. It is illustrated in Figure 3. In general, G; consisting of countable union
of polygonal arcs, rectangles and copies of K. The rectangles are all of the form
I x J" where each I is some A, i.e., one of the component intervals of Ay, and J' is

a component of one of the sets J N K, where m > j if J = KJ’?.
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Ficure 3. The basic template G for the construction. Each sym-
metric pair of columns of rectangles corresponds to a positive integer.
The two dashed vertical segments (far left and far right) are only used
in the first step of the construction, to give a closed curve.

We attempt to describe Figure 3 in words. Gy has two copies of the Cantor set
K, positioned in the vertical lines {x = +1/4}, near the center of the picture. There
are countably many rectangles, arranged in vertical columns which accumulate on
the two Cantor sets from the left and right respectively. Each positive integer k
corresponds to 2¥*! rectangles arranged in two columns. The integer 1 corresponds to
the two leftmost and two rightmost rectangles in Figure 3. The integer 2 corresponds
to the eight rectangles in the two columns adjacent to the first two, and so on.
More precisely, the 2¥+1 rectangles associated to the integer k are the components of
A x K,. The set A, has two components and K,, has 2" components, giving the
correct number of rectangles in the product. Each rectangle is then connected to
three other rectangles in the two adjacent columns, and to one other rectangle in the
same column, all as shown in Figure 3. (Slightly different arcs are used to connect
the outermost rectangles to each other, as shown by dashed vertical segments at the
far left and far right of Figure 3.) For templates G; other than Gy the construction
is exactly the same, except that K, is replaced by K, ;N J it J = K ]’“ This is done

so that the limiting Cantor sets are all translates of the same fixed set K.
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Given these templates, we construct a Jordan curve I' as an intersection I' =
NI, of compact connected sets each consisting of a countable union of rectangles,
polygonal arcs and copies of the Cantor set K. The steps of the construction are
controlled by the choice of a rooted tree T in X C 2V, and is designed so that I' will
be A-removable if and only if T" is well-founded.

So suppose T is fixed. The construction always starts with a copy of GGy that has
two short polygonal arcs added at the far left and far right, to join the upper and
lower halves of the template set, making it connected. These are shown as dashed
segments in Figure 3, but occur as solid lines in several of the following figures.

We will induct over levels of the tree, starting at the root vertex (labeled by the
empty string) and at each stage of the construction, we will have a set I',, consisting
of a countable collection of rectangles joined by polygonal arcs and accumulating on
translates of the set K. At the nth stage, each rectangle R = I x J is labeled by a
n-long string of positive integers that is a label of some vertex v of the tree T. To go
from I, to I',,11, we replace each rectangle R in I, by a rescaled copy of the template
G (rescaled affinely to exactly fit into R). If vertex v is a leaf of T' (i.e., it has no
children), then every rectangle R’ in the rescaled copy of the template is replaced by
a pair of horizontal line segments that connect the vertical sides of R’ exactly at the
points where arcs of the template connect R’ to other rectangles in the template. If
v is not a vertex then there is a set of positive integers that when appended to the
label of v give labels of its children. For the template rectangles corresponding to
these integers we leave the rectangle alone. For the other integers (those that do not
correspond to children of v), we replace the corresponding rectangles with horizontal
line segments, as above. Doing this for every rectangle in I';, gives a closed connected
subset I',, 1 C T'),.

The simplest case is when the tree 7" has only one vertex (labeled by the empty
string). Then every rectangle of the template Gy is replaced by pair of horizontal
segments. The result is illustrated in Figure 4. Here, I' is a closed Jordan curve that
is a countable union of polygonal arcs and two copies of the Cantor set K, and is
clearly an A-removable set.

The next easiest case is when we have a rooted tree with two vertices, say with

root labeled by the empty string and the single leaf labeled by “1”. If we replace the
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FIGURE 4. The curve corresponding to the single vertex rooted tree,
labeled by the empty string. This is a countable union of line seg-

ments and two linear Cantor sets and hence is A-removable. It is the
“simplest” curve in our collection.

four rectangles in GGy that correspond to the integer “1” with rescaled copies of Gy,
the result is shown in Figure 5. Any curve corresponding to a tree that contains the
edge connecting the root to vertex “1”, will be a subset of the illustrated set. When
T consists only of this one edge, then every rectangle in Figure 5 is replaced by a
pair of horizontal edges, giving the closed Jordan curve shown in Figure 6. If the
second vertex was labeled “k” instead, the replacements would occur in corresponding
columns of the template.

Finally, we have to observe that the resulting curve is A-removable if and only if
the associated tree 1" is well-founded. If T' is well-founded, then the final curve is
a countable union of line segments and linear Cantor sets and hence is A-removable
by one direction of Carleson’s theorem. If T" has an infinite branch then the curve
contains a copy of ' x K, where F is a Cantor set depending on the branch, and
thus it is non-A-removable by other direction of Carleson’s theorem.

Next, we will verify that the map from trees to curves is continuous from the
product topology on X7 C 2N to the Hausdorff metric on 2°. Recall that each tree

is encoded by a binary sequence in 2 whose nth coordinate indicates whether nth
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FIGURE 5. The four rectangles corresponding to “1” in the template
have been replaced by rescaled copies of the template. Any curve con-
taining the vertices {{), 1} will contain these arcs.
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FIGURE 6. The curve corresponding to the tree with vertices {0, 1}.
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FIGURE 7. The curve corresponding to the tree with vertices {0, 1, 2}.

There are countably many segments and 10 copies of the linear Cantor
set K.

string (according to some fixed enumeration of N*) is the label of some vertex of
the tree. If the encodings of two trees 17, T, agree for the first N places, then the
two corresponding curves share the same templates for these vertices, and can only
disagree within the rectangles that are filled in later in the construction. However,
each time we apply a template, the rectangles the occur inside the replaced rectangle
have smaller diameter (tending to zero with both the length of the corresponding
string label, and the size of the last entry of the string). Thus the curves corresponding
to T} and T, agree except within a union of disjoint rectangles that each have small
diameter, and so that each curve contains some point in each rectangle. Thus the
Hausdorff distance between the curves is at most ¢y. Therefore, the set of well-
founded trees is the preimage of the set of A-removable curves under a continuous
map from X7 into the hyperspace of [—1,1]%. Hence this collection of A-removable

curves is co-analytic complete and, in particular, it is not Borel. O
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9. CH-REMOVABLE JORDAN CURVES ARE CO-ANALYTIC COMPLETE

The logarithmic capacity, Ciog(E), of a set E C [0,1] is defined as the supremum
of the masses of positive measures u supported on E so that the convolution u*log %
is bounded above by 1 on E (hence everywhere). This agrees with the definition in
Carleson’s book [16], but it disagrees with some other sources, such as [24], that define
logarithmic capacity as exp(—1/Ciog(E)), and call 1/Clog(E) the Robin’s constant of
E. Both definitions give the same sets of zero capacity, but we prefer Carleson’s
approach here, as his version is sub-additive and the other is not. In [1], Ahlfors and
Beurling show that K C [0, 1] is S-non-removable iff Ci,g([0,1] \ K) < Ciog([0, 1]),
and that this implies that K has positive length (but not conversely). This result is

the basis for the following theorem.

Theorem 9.1. The collection of CH-removable Jordan curves contained in S =

0, 1)% is co-analytic complete in 2°.

Proof. In [63] Jang-Mei Wu proves that if K C [0, 1] is a Cantor set with the property
that the logarithmic capacity of [0, 1]\ K is strictly less than the logarithmic capacity
of [0,1], and if E is any Cantor set, then E x K is C'H-non-removable. By the result
of Ahlfors and Beurling noted above, this is same as saying K is S-non-removable.
Since any uncountable closed set contains a Cantor set, we can use Wu'’s theorem
and half of Lemma 6.2 to deduce that for a closed set E C [0, 1], the product E x K
is C'H-removable if and only if F is countable. Thus if we use such a Cantor set K in
the proof of Theorem 8.1, we obtain Theorem 9.1. (We also need to show these curves
form a co-analytic set, but this is essentially the same as for A-removable curves.)
To finish the proof, we construct a Cantor set K with the desired properties. Start
with Ky = [0,1] and remove an open interval of length ay centered at 1/2, leaving
two closed intervals as K. In general, remove a centered, open interval of length a,,
from each component of K,, to obtain K, ., and let K = N, K,,. One can easily show
the logarithmic capacity of an interval of length r is comparable to 1/|logr|, so the
sub-additivity of logarithmic capacity (see Lemma 4 of [16]), implies the logarithmic
capacity of [0,1]\ K, is at most O (32 ,2"/|loga,|), which is as small as we wish if

ag is small and we take a,, 0 fast enough. O
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As noted at the end of the introduction, this result is due to Dimitrios Ntalampekos,
who pointed out that the proof of Theorem 8.1 applies to C' H-removable curves if we
simply take the Cantor set K to be one of the C'H-non-removable sets constructed
by Jang-Mei Wu in [63].

The proof of Wu’s result in the general case is perhaps too long to replicate fully
here, but for the sake of completeness, we will sketch the construction of a single
Cantor set K with the property that £ x K is C'"H-non-removable for any Cantor
set E. This is sufficient for a self-contained proof of Theorem 9.1. We roughly follow
Wu’s proof in [63] for the general case, but several steps simplify for our set (and we

do not need to recall as much potential theory).

Lemma 9.2. There is a Cantor set K C [0,1] so that for a compact set E, the
product E x K is C'H-non-removable if and only if E is uncountable.

Proof. It E is countable, then the product is removable by Lemma 7.1, so we only
need to prove the other direction.

We start by building a sequence of nested compact sets Hy C H; C --- C C,
so that each set consists of finite number of horizontal line segments, each centered
on the y-axis. For each segment [ in H,, there will be a segment J on the y-axis
centered where I crosses the y-axis, and so that J hits no other points of H,. To
begin the construction, we let Hy be just the single segment [ = [-1,1] C R and
let the associated vertical segment be J = [—i/2,i/2]. In general, given a non-trivial
segment [ in H,, for n > 2, we can define its associated vertical segment J as follows.
If I hits iR at iy, and if §; = dist(1, H, \ I), then we can take J =i - [y — d;,y + d1].

Next, let J’ be the vertical segment concentric with J and one third the length.
Note that the collection of these smaller intervals J' from a single generation is
pairwise disjoint, and any two of them are separated by a open interval at least as
long as the longer of the two. Let R denote the rhombus that is the convex hull of
I'UJ', and add 2n horizontal segments with endpoints on the boundary of R, with
heights evenly spaced over the top and bottom halves of J'. The process is illustrated
in Figure 8. We define H to be the closure of U2 H,,. Note that the vertical intervals
corresponding to two adjacent horizontal segments in H,, are not just disjoint, but

are separated by a non-trivial open interval which does not hit H,, for any m, and
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thus misses H. Thus /R \ H is open and dense, so the horizontal projection of H

onto iR is a Cantor set.
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FIGURE 8. The left side shows two adjacent horizontal segments of
H,,. The vertical dashed line is the y-axis, the two diagonal dashed
lines are edges of a rhombus from the previous generation. The shaded
rhombuses are those corresponding to the two segments. On the right,
we show the horizontal segments of H,; defined using these rhom-
buses. In the limit, we obtain a set H which contains uncountably
many horizontal line segments, all of which have zero harmonic mea-
sure from oco.

Let H, = {x+iy : > 0} denote the right half-plane, and let H; = {z+iy : © < 0}
be the left half-plane. Define 2 = H,. \ H. This domain is simply connected, and so,
by the Riemann mapping theorem, it can be mapped to H, by a conformal map f
that fixes co and +i. Let f, : H, — H, \ H,. Then f, — f uniformly on compact
sets of H,, and so the same is true for their derivatives. It is easy to check that if
fn = up + iv,, then v, (iy) is increasing on the preimages of iR \ H,, and constant on
the preimage of each segment in H,,. Thus u,, has normal derivative > 0 on the former
set and = 0 on the latter. This implies Re(f]) > 0 on H,., and hence the same is true
for f (the limit can’t be zero, for then f would be constant by Harnack’s inequality).
By Schwarz reflection, f can be extended to a conformal map of @ = C\ H to a
domain W whose boundary is a Cantor set K on the y-axis. This is the set K we
are seeking.

We claim that K is a Cantor set. It is clear that K is closed and has no isolated
points, so we need only show its connected components are all points. To prove this,
suppose [ is a component of H,. It is easy to check from the definitions that the
distance from [ to the closest distinct component of H, is less than 1/n (actually it

is much smaller, less than 1/n!), and that adjacent components of H, have length
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differing by at most 1/n. Thus each component I of H, can be separated from oo
in H, by a crosscut ~; of H, that lies inside €, = C\ H,, and such that ; can
be separated from oo by a crosscut o; of 2, with diameter at most 4/n. For point
components z of H, we can take o, = 7,, and for segment components I, we choose
or to connect endpoints of components of H,, that are adjacent to I, as illustrated in

Figure 9.

FiGure 9. Each component I of H, is separated from infinity by
a crosscut y; of small harmonic measure, which implies its f-image
has small harmonic measure, hence small diameter in H,. Reflecting
~r across the y-axis gives a loop around [ in C\ H,, and an infinite
nested family of such loops defines a unique connected component of
H. The f-images of these loops have diameters tending to zero, im-
plying every connected component of K is a point, and giving a 1-to-1
correspondence between points of K and connected components of H.

By the maximum principle, the harmonic measure of «y; (from the point 2) is at most
the harmonic measure of o7, and the latter is bounded O(+/diam(a;)) = O(n~'/?) by
corollary of Beurling’s projection theorem (e.g., Corollary I11.9.3 of [24]). Thus by
conformal invariance, K can be separated from f(2) in H, by a finite set of crosscuts
in H, with endpoints outside K (namely, the f-images of v;), each of which has small
harmonic measure, hence small diameter. This implies K only has point components,
proving the claim.

We let F' = f~! denote the inverse conformal map from W = C\ K to Q. The
argument in the previous paragraph also shows that F' associates each point of K to
a component of H. More precisely, if z, — 1y € K then F(z,) can only accumulate

on the associated component of H. In particular, {Im(F(z,))} has a well defined
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limit, even if the real parts do not. Note that by symmetry

(9.1) Im(F(x +iy)) = Im(F(—z + iy)).

In particular, F' restricted to R\ {0} is a continuous, strictly increasing function, and
9.2 —lim F(z) =lim F(z) =1

(9.2) lim F(z) = lim F(z) = 1,

i.e., F has a jump of size 2 at the origin. The fact that F' associates points of K
to components of H means that at other points of the y-axis, F' can only have a

non-negative jump in the following sense: for any real number M,

(9.3) limIm [F(z +iMz +iy)) — F(—x —iMax + iy)] = 0.

N0

The existence of F' implies K is S-non-removable, and hence K has positive length
by the result of Ahlfors and Beurling mentioned just before Theorem 9.1. However,
we can give a direct proof of this as follows. Inside QT = H.,. \ H, the set H has
positive harmonic measure (the choice of base point in Q* is unimportant, but to
be concrete, we take zp = 2). To see this, observe that I = [1/2,1] has positive
harmonic measure in H, \ I, and since I C H, the maximum principle implies H
has positive harmonic measure in §2. Thus by conformal invariance, K has positive
harmonic measure in H,, and thus it has positive length.

Suppose F is any Cantor set. We claim that £ x K is C'H-non-removable. By
restricting to a subset and translating we may assume E C [0,1/10], and that E has
zero length (if F has positive length, there is nothing to do since E' x K has positive
area, and so it is C'H-non-removable by the measurable Riemann mapping theorem).

Since F is uncountable, it supports a non-atomic probability measure p. Let

G(z) = /E F(z + t)du(t).

It is easy to verify that G is continuous everywhere (it is the convolution of a locally
bounded function and a non-atomic measure) and is holomorphic off £ x K.

If G were a homeomorphism, and if £'x K were C'H-removable, then GG extends to a
conformal homeomorphism of the plane to itself, and hence it would be a linear map.
However, it follows from (9.2) that F' restricted to R can be written as the sum of a
continuous, strictly increasing function F} and the jump function Fy(x) = 1+sign(z).
The convolution of p with the step function Fj is continuous and singular: it maps the

zero length E to a set of positive length. Adding the strictly increasing convolution
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of p with F) preserves this property, hence G = F' % p is not a linear map. This
contradiction completes the proof of non-removability, once we know that G is a
homeomorphism.
It suffices to show that if z # w, then G(2) # G(w). This follows if
Re (M) < 0.
zZ—w
In fact, we will prove a uniform estimate

Re (M) > n(|z —w|) > 0.

zZ—w
where the lower bound only depends on the distance between z and w. Since G is
continuous, we only need to prove such a bound for a dense set of pairs so we may
assume Re(z) # Re(w) and neither z nor w is in F x R. Since G(z) is a convex

combination of the values {F(z +1t)}, t € E, it suffices to show that
F(z)—F
e ) ELSIET:

Z—w
when Re(z) < Re(w) and neither real part is zero. If the segment I = [z, w] connect-
ing z and w does not hit K, then F' is analytic on a neighborhood of I and
(9.4) Re <w> - /0 Re(F/( + 1w — 2)))dt.
The integral on the right is positive since Re(F”) > 0 off K. Moreover, the integral
is bounded uniformly away from zero depending only on the length of the segment
I. (This uses that Re(F”) is positive off the Cantor set K, and that it has a positive
limit at co.) The other possibility is that S crosses the imaginary axis at iy € K.
Set I, = I\ {|Re(z)| < z}. Then we have
Re (M) > lim [ Re(F'(z+t(w—2)))dt
Z—w N0 S,
—i—lian\jglf[F(a: +iMz +1iy)) — F(—z — iMzx + iy)]

where M is the slope of S (note that M # oo since we assumed Re(z) # Re(w)).
The integral over I, is bounded away from zero for z small, since one of its two
components has length greater than |7|/4 for small z, and by (9.4) this gives a positive
lower bound. By (9.3) the limit infimum in the second term is a non-negative real
number. This gives the desired lower bound, and therefore GG is a homeomorphism,

completing the proof that F x K is C'H-non-removable. O
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Dimitrios Ntalampekos observed that the arguments of Ahlfors and Beurling in [1]
can be used to prove that the complement S-non-removable compact set K C iR
can be conformally mapped to the complement of a compact set H whose connected
components are either points or non-trivial horizontal slits, and that some non-trivial
slits must occur. Therefore, the proof given above for a single, explicit K could be
used to prove Wu’s theorem in general, although this would require invoking the

aforementioned results of Ahlfors and Beurling.

10. HOw HARD IS CONFORMAL WELDING?

We recall some definitions from the introduction. If I' is a closed Jordan curve in
the plane, the Riemann mapping theorem gives conformal maps f and g from the
inside and outside of the unit circle to the inside and outside of I'. By Carathéodory’s
theorem?® these maps extend to be homeomorphisms of T to I'. Thus h = g~ ' o f :
T — T is a homeomorphism, and circle homeomorphisms that arise in this way are
called conformal weldings.

Not every homeomorphism is a welding. In [49], Oikawa proved that if h: T — T
is given by h(exp(if)) = exp(i(27)'=* - %) for some 0 < o < 1 and 0 < 6 < 27, then
h is not a conformal welding of the circle.

A more geometric example can be described as follows. Consider the graph of
sin(1/z) for = # 0, together with the limiting segment [—i,4]. See Figure 10. This is
closed set X dividing the plane into two simply connected domains and one can show
that the conformal maps form either side of T to either side of X still define a circle
homeomorphism h. Moreover, we can choose f and ¢ so that 1 € T corresponds to
the prime end [—i, 4] under both maps, and hence h fixes this point.

However, h cannot correspond to any Jordan curve I'; if it did, one could confor-
mally map the two sides of X to the two sides of I' so that the maps agree along
the graph of sin(1/z). Since this curve is removable for conformal homeomorphisms
the map extends to be conformal from the complement [—i,i] to the complement

of a point. Since the complement of the segment is conformally equivalent to the

3This result was actually first proven by Carathéodory’s student Marie Torhorst in her 1918
doctoral dissertation using Carathéodory’s theory of prime ends, so perhaps it is more appropriate
to call it the Carathéodory-Torhorst theorem; see [54] for some of the history.
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A/Q\ /_f]\;
& g V \I \} \I mew& | V
FiGure 10. An example of a non-welding homeomorphism. If f;, g
map the two sides of T to the two sides of a sin(1/x) curve v, then

h = g;' o f1 is a homeomorphism, but is not a conformal welding, as
explained in the text.

unit disk, we would get conformal map between the disk and the plane, which would

violate Liouville’s theorem. Thus this homeomorphism is not a conformal welding.
It is a long standing, and apparently very difficult, problem to characterize confor-

mal weldings among circle homeomorphisms. We explained in Section 8 that circle

homeomorphisms are a G set in C(T, T), and hence a Polish space.

Question 1. Are conformal weldings Borel in the space of circle homeomorphisms?

Are non-weldings co-analytic complete?

It is not hard to prove that weldings form analytic subset of circle homeomorphisms,
so non-weldings are co-analytic. The difficult part seems to be to construct a Borel
map from a Polish space into circle homeomorphisms, so that the preimage of the
non-weldings consists of known co-analytic complete set. For example, is there a
Borel map from compact sets of T to circle homeomorphisms so that the preimage of
the non-weldings are the countable compact sets? We saw above that it is possible
to construct a circle homeomorphisms that has an “obstruction” at just one point.
Also, it is known (see Theorem 2 of [9]) that any circle homeomorphism A can be
written as h = f~! o g where f and ¢ are conformal maps of D and D° onto disjoint
simply connected domains, with equality holding everywhere except on a set £ C T
so that £ and h(E) both have logarithmic capacity zero. Can this be improved to a
countable exceptional set? If so, can this be used to give a map from non-weldings

to countable subsets of T? Such a map is going in the wrong direction to prove
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that non-weldings are co-analytic complete, but it would still be very interesting to
understand if such a map exists and what its properties are.

The best known sufficient condition for being a conformal welding (due to Pfluger
[51]) is quasisymmetry (QS for brevity): h: T — T is M-quasisymmetric if

1 |h(D)
M = 1h())

< M,

whenever I, J are adjacent arcs on T of the same length, and |I| denotes the length
of an arc. A map is quasisymmetric if it is M-quasisymmetric for some finite M. For
a fixed M, M-quasisymmetry is clearly a closed condition (with respect to uniform
convergence), so taking M — oo along the integers shows quasisymmetric homeo-
morphisms are a F, set inside Homeo(T,T). Quasisymmetric weldings correspond
precisely to closed curves that are quasicircles, i.e., images of the unit circle under
quasiconformal maps of the plane. There are numerous characterizations of this class
of curves, including the following: any two points z,w € v are connected by a subarc
with diameter bounded by O(]z —w|).* Tt is easy to see M-quasisymmetric maps are
nowhere dense, so the set of quasisymmetric homeomorphisms is meager the space of
all circle homeomorphisms. A set is meager if it is a countable union of nowhere dense
sets. Such sets are also called “first category”, although this usage is becoming less
common. A set is called residual if it is the complement of a meager set. Trivially,
subsets of meager sets are meager, and supersets of residual sets are residual.

A more recent (and somewhat less well known) sufficient condition to be a con-
formal welding is for h to be log-singular, i.e., that there exist a set £ C T of
logarithmic capacity zero so that T\ f(F) also has logarithmic capacity zero. See [9)].
Quasisymmetric and log-singular circle homeomorphisms are easily seen to be disjoint
sets (e.g., QS homeomorphisms preserve sets of zero logarithmic capacity). Recently,
Alex Rodriguez proved that any circle homeomorphism is the composition of two
log-singular homeomorphisms, and hence any circle homeomorphism is the compo-
sition of two conformal weldings [55]. However, his proof decomposes even “nice”

homeomorphisms as the composition of two highly singular maps. Is this necessary?

4 According to page 84 of Lehto’s biography [41] of Alhfors, this was first proved in Martti Tienari’s
1962 dissertation, and independently by Ahlfors. Lehto quotes Ahlfors as saying “I have to confess
that when I first proved the result, I thought it was too good to be true”
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Can a homeomorphism with some given modulus of continuity be decomposed into

welding with similar estimates?

Question 2. Is any bi-Holder circle homeomorphism the composition of bi-Holder

welding maps?

Some other classes of circle homeomorphisms that are known to be conformal weld-
ings were described by David [19] and Lehto [40] (actually they describe conditions
on a measurable function p on the unit disk so that the Beltrami equation fz = uf,
has a homeomorphic solution, and the boundary values of these solutions are the

circle homeomorphisms I am referring to). See also Chapter 20 of [4].

Question 3. Is the collection of David homeomorphisms a Borel set within the space

of circle homeomorphisms? The collection of Lehto homeomorphisms?

If v is a closed Jordan curve with complementary components 24, 2o, we say x € y
is rectifiably accessible from 2, for £ = 1,2, if it is the endpoint of a rectifiable
curve in €. By a result of Gehring and Hayman (see [26] or Exercise II1.16 of
[24]) this occurs iff a hyperbolic geodesic ray ending at z has finite Euclidean length.
A result of Charles Pugh and Conan Wu [52] says there is a residual set of closed
curves v so that no point on ~ is rectifiably accessible from both sides at once. In
their terminology, v is not pierced by any rectifiable arc. See [12] for an explicit
construction of an extreme example of such a curve v (any rectifiable curve crossing
7 intersects 7y in positive length). By a result of Beurling, the set of points that are
not rectifiably accessible from §2;, k = 1,2 is the image of a zero logarithmic capacity
set on T under any conformal map D — €, (see [8], Exercise I11.23 of [24], or [5]).
If ~ is not pierced by any rectifiable curve, let E be the set of boundary points that
are rectifiably accessible from €2;. Then no point of F can be rectifiably accessible
from €25, and by Beurling’s theorem, the image of E has zero logarithmic capacity
under the Riemann map from 2 to the disk, and v\ E has zero capacity under the
Riemann map for €2;. Therefore every rectifiably non-pierceable curve of Pugh and
Wu has a conformal welding that is log-singular. Theorem 3 of [9] states that h is
log-singular if and only if the corresponding curve is flexible; this means that the
set of curves corresponding to h is dense in the space of all closed curves with the

Hausdorff metric. See [9] for the precise definition. Thus the set of curves with a
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given log-singular welding is dense in the space of all closed Jordan curves, and hence

is C' H-non-removable in a strong way. Therefore we have the following result.

Theorem 10.1. The collection of C'H-non-removable closed curves is residual in the

space of all closed Jordan curves.

Very recently, Rodriguez [56] has proven that every log-singular circle homeomor-
phism is the welding of a collection of curves that includes curves of every Hausdorff
dimension on [1,2], and even a curve of positive area. If a curve has positive area,
then by scaling a non-zero dilatation supported on the curve, we can use the measur-
able Riemann mapping theorem to produce a 1-parameter family of non-removable
curves, none of which is a Mobius image of the others. In particular, this gives un-
countably many curves with the same welding, so that no two of them are Mobius
images of each other. Given the result above for curves, it is natural to ask the

analogous question for circle homeomorphisms.

Question 4. Is the set of log-singular homeomorphisms residual in the space of all

circle homeomorphisms?
Question 5. What is the Borel complexity of the log-singular homeomorphisms?

It is not hard to show that both sets are analytic: h is log-singular if for every n € N
there is a compact set such that both E and h(E°) have logarithmic capacity less than
1/n (Lemma 11 of [9]). Thus the log-singular maps are a countable intersection of
projections of the Borel sets {(h, E) : cap(E), cap(h(E°)) < 1/n} in Homeo(T, T) x 2T.
Can analytic be improved to Borel?

Recall that we say ['" is a C' H-image of I' if " = f(I") where f is a homeomorphism
of the sphere that is conformal off I'. We will say this is a strict C'H-image if f is
not a Mobius transformation, and say it is a very strict C'H-image if f(I") is not a
Mobius image of I'. It is tempting to say that a strict image is also very strict, but
this might not be true. Maxime Fortier Bourque pointed out that the image of I'
under a non-Mobius homeomorphism of the sphere might coincidentally agree with
its image under some Mobius map. Moreover, using log-singular weldings, Malik
Younsi [65] constructed a curve with a strict C'H-image that agrees with itself. In
Younsi’s example, there are also very strict C'H-images that are not Mobius images,

so it is still possible that a very strict image exists whenever a strict image does.
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Question 6. Is the map from (equivalence classes of ) curves to (equivalence classes

of ) conformal weldings 1-to-1 exactly on the C H-removable curves?
I expect this is true. The following is a stronger version.
Question 7. Does every C' H-non-removable curve have a C'H-image of positive area?

More generally, does this hold for all C'H-non-removable sets? It does for all
examples known to the author. Various other questions about weldings and C'H-

removable curves remain open.

Question 8. [Is the map from equivalence classes of curves to equivalence classes of

weldings always either 1-to-1 or uncountable-to-1¢
Question 9. Are C'H-images of a curve a connected set in the Hausdorff metric?

Question 10. Is there a 1-parameter family of zero-area, non-C H-removable curves
that is continuous in the Hausdorff metric, so that no element is a Mobius image of

any other member of the family?

Question 11. The C'H-images of a flexible curve are dense in the space of closed
Jordan curves, and hence are not a closed set. Is this set of curves Borel? (It must
be analytic.) Is it connected? Can it be totally disconnected? (Not if the answer to
Question 7 is yes.)

11. WHAT ARE NATURAL RANKS FOR REMOVABLE SETS?

This section requires greater familiarity with the transfinite ordinals than did ear-
lier sections. Very briefly, each ordinal is a well ordered set (each element has a
successor, although some elements have no predecessor). The ordinals themselves are
well ordered and there is a first well ordering of an uncountable set, which is denoted
wi. Every ordinal that becomes before wy is, by definition, the well ordering of some
countable set. The continuum hypothesis is the claim that w; = ¢, where ¢ is the
cardinality of R, and is well known to be independent of ZFC.

If X is Polish and A C X is co-analytic, then there is always a co-analytic rank on
A. This is a function p on X that assigns each point of X to some ordinal < w; and
such that
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(1) A= {r e X : pla) <wn}.
(2) {(z,y) € Ax A:p(x) < p(y)} is co-analytic in X x X,
(3) {(z,y) € Ax A:p(x) < p(y)} is co-analytic in X x X.

Given such a function p, one can show that for every countable ordinal «, every set
A, ={z € A:p(z) < a}isaBorel set, and every analytic subset of A is contained in
some A,. Moreover, A is Borel if and only if every co-analytic rank of A is bounded
above by some countable ordinal.

The standard example (dating back to Cantor and motivating his invention of
transfinite ordinals) involves the derived sets of a compact set in R. Given a compact
K, the derived set K’ is K with its isolated points removed; this is a compact subset
of K, with at most countably many points removed. If K was finite then K’ = (), and
otherwise we can repeat the process to get the second derived set K”. Continuing, we
get a nested sequence of sets that either becomes empty after n < oo steps (in which
case we set p(K) = n) or we get an infinite, strictly decreasing sequence of nested
compact sets whose intersection is a non-empty compact set K“. If the derived set
of K“ is empty, then set p(K) = w, and otherwise continue as before. We proceed
with this using transfinite induction. If K is countable, then since we remove at least
one point at each stage, we must reach the empty set at some countable ordinal,
and take this ordinal to be the rank of K. Since we remove only countably many
points at each stage, starting with an uncountable set never gives the empty set at
any countable ordinal. For such sets the rank is defined to be w;. This defines a rank
for the co-analytic set of countable, compact subsets of [0, 1].

In [37] Kechris and Woodin describe a natural rank on the set of everywhere differ-
entiable functions in C([0, 1]). See also [38], [39], [53], for comparisons between their
rank and other ranks on the same set. A thesis of [37] is that “natural” co-analytic

sets should have natural ranks.
Question 12. What is a natural rank on the space of conformally removable sets?

For the special case of product sets £ x [0, 1] with £ countable, we can just take

the usual rank on countable compact sets described above using derived sets.

Question 13. Can the derived set rank on E x [0,1] be extended to a co-analytic

rank on all removable sets in S = [0,1]*?
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