
CONFORMAL REMOVABILITY IS HARD

CHRISTOPHER J. BISHOP

Abstract. A planar compact set E is called conformally removable if every home-
omorphism of the plane to itself that is conformal off E is conformal everywhere,
and hence linear. Characterizing such sets is notoriously difficult and in this paper,
we partially explain this by showing that the collection of conformally removable
subsets of S = [0, 1]2 is not a Borel subset of the space of compact subsets of S with
its Hausdorff metric. We give some similar results for other classes of removable
sets and pose a number of open problems related to removability and conformal
welding, using the language of descriptive set theory.

1. Introduction

Several well known problems in classical complex analysis have remained open for

nearly a century and seem intractable. Two of these are to characterize the compact

planar sets that are removable for conformal homeomorphisms, and to characterize

conformal welding homeomorphisms among all circle homeomorphisms. The purpose

of this paper is to partially explain the difficulty of these problems by proving that

the collection of conformally removable sets is not a Borel subset of the space of all

planar compact sets with the Hausdorff metric. Much of the paper is a survey of the

relevant ideas from complex analysis and descriptive set theory, and a recasting of

known results into new forms. However, we also present a new result regarding two

special classes of removable Jordan curves, and we discuss several new open problems

at the interface of classical complex analysis and descriptive set theory. We start by

recalling some relevant definitions.

A planar compact set E is called removable for a property P if every function with

property P on Ω = Ec = C\E is the restriction of a function on C with this property.

For example, if P is the property of being a bounded holomorphic function, then E is
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removable iff every bounded holomorphic function on its complement extends to be

bounded and holomorphic on the whole plane (and hence is constant by Liouville’s

theorem). A standard result in many introductory complex variable classes is the

Riemann removable singularity theorem, that says single points are removable in this

sense. While there are a wide variety of properties that could be considered, most

attention has been devoted to the following cases:

• H∞-removable: P = bounded and holomorphic,

• A-removable: P = H∞ and extends continuously to E,

• S-removable: P = holomorphic and 1-to-1 (also known as conformal or schlicht),

• CH-removable: P = conformal and extends to a homeomorphism of C.

For an excellent survey of what is known about each of these classes, see Malik

Younsi’s 2015 paper [64].

The basic problem is to find “geometric” characterizations of removable sets. For

example, Xavier Tolsa has given a characterization of H∞-removable sets in terms

of the types of positive measures supported on the set (see Section 2). Ahlfors and

Beurling [1] gave a characterization of S-removable sets as “NED sets” (negligible sets

for extremal distance; the precise definition will be given at the end of Section 7). On

the other hand, although there are various known sufficient conditions and necessary

conditions, e.g., [30], [32], [33], there is no simple characterization of A-removable

or CH-removable sets. Thus it appears that characterizing these sets is “harder”

than characterizing H∞-removable or S-removable sets. The following is a precise

formulation of this idea (Gδ and Borel sets will be defined later in this section; for

the moment think of Gδ as “relatively simple” and not Borel as “very complicated”).

Theorem 1.1. Let S = [0, 1]2 be the unit square in C and let 2S denote the hyperspace

of S, i.e., the compact metric space consisting of all compact subsets of S with the

Hausdorff metric. Within this metric space, the collection of

(1) H∞-removable subsets is a Gδ,

(2) S-removable subsets is a Gδ,

(3) A-removable subsets is not Borel,

(4) CH-removable subsets is not Borel.

Thus, in some sense, removability for conformal homeomorphisms is distinctly more

complicated than for bounded holomorphic functions. It turns out that the proof of
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parts (1) and (2) are fairly elementary, and that parts (3) and (4) follow from well

known results in descriptive set theory and complex analysis.

Given a closed Jordan curve Γ with bounded complementary component Ω and

unbounded component Ω∗, there are conformal maps f : D = {|z| < 1} → Ω and

g : D∗ = {|z| > 1} → Ω∗. Both these maps extend homeomorphically to the circle

T = ∂D = {|z| = 1}, so h = g−1 ◦f is a homeomorphism of the circle to itself. Such a

map is called a conformal welding. A single curve Γ can give rise to several weldings

due to different choices of the conformal maps f and g but all such maps are related

by compositions with Möbius transformations of the circle. Similarly, two curves that

are Möbius images of each other will have the same set of associated weldings. In fact,

this is true for any image of a curve Γ under a homeomorphism of the sphere that is

conformal off Γ. (For brevity, we call this a CH-image of Γ.) For a CH-removable

curve, such a map must be a Möbius transformation, so conformally removable curves

(modulo Möbius transformations of the 2-sphere) are uniquely determined by their

welding (modulo Möbius transformations of the circle).

It is very tempting to claim that a non-removable curve is not uniquely determined

by its welding, but this is still open; it is possible that there is some non-removable

curve Γ so that any CH-image of Γ is also a Möbius image. Very likely there is

no such curve. Indeed, an even stronger conjecture is that any conformally non-

removable curve has a CH-image of positive area. Combined with the measurable

Riemann mapping theorem (e.g., Theorem V.B.1 of [2], or Theorem 5.3.2 of [4]), this

conjecture would imply that every non-removable curve has a CH-image that is not

a Möbius image. We will say more about these problems in Section 10.

It is known that not all circle homeomorphisms are weldings, e.g., examples are

given in [9] and [49], and these examples are described in Section 10. Thus the map

from curves to circle homeomorphisms is not onto. However, weldings form a “large”

subset in several senses. For example, conformal weldings are dense in all circle home-

omorphisms. This is easy for the uniform metric, since every circle diffeomorphism is

a welding, but they are also dense in a much stricter sense: for any ε > 0, any circle

homeomorphism can be altered on set of length ε to become a conformal welding.

See Theorem 1 of [9]. Moreover, weldings generate all circle homeomorphisms, i.e.,

any circle homeomorphism is the composition of two conformal weldings, [55]. It
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follows from a result of Pugh and Wu that conformal weldings contain a residual set

in the space of all circle homeomorphisms (see Section 10 for details). However, it is

not known if weldings are a Borel subset of circle homeomorphisms. It follows from

general results about Borel sets (to be stated more precisely in Section 3), that if

the map from curves to weldings were injective, then conformal weldings would be

a Borel subset of circle homeomorphisms. Thus the question of whether conformal

weldings are a Borel subset is closely linked to understanding the failure of injectivity

for this map, and it seems likely that injectivity fails exactly for CH-non-removable

curves, creating a strong link between these problems. Moreover, the collection of

non-removable curves is quite complex, as indicated by the following result.

Theorem 1.2. As above, let S = [0, 1]2 be the unit square in C and let 2S denote the

hyperspace of S, i.e., the compact metric space consisting of all compact subsets of

S with the Hausdorff metric. Within this metric space, the collection of A-removable

closed Jordan curves is not Borel. Similarly, the collection of CH-removable Jordan

curves is not Borel.

Next, we define a few terms that we have been using. Given a compact set K, we

define the Hausdorff distance between compact subsets K1, K2 as

dH(K1, K2) = inf{ε : K2 ⊂ K1(ε), K1 ⊂ K2(ε)},

where Kj(ε) = {z : dist(z,Kj) < ε} is the open ε-neighborhood of Kj, j = 1, 2. This

defines a compact metric space consisting of all compact subsets of K, called the

Hausdorff hyperspace of K and denoted 2K (e.g., see Theorem A.2.2 of [10]). In this

paper, we mainly deal with three examples of K: the unit interval I = [0, 1] ⊂ R, the

unit square S = [0, 1]2 ⊂ R2 = C, or the Riemann sphere S. The collection of Borel

sets is the smallest σ-algebra containing the open sets (a σ-algebra is closed under

countable unions, countable intersections and complements). An Fσ set is a countable

union of closed sets; a Gδ is a countable intersection of open sets (this terminology

originates with Hausdorff in 1914). These are the lowest level of a hierarchy of Borel

sets, indexed by the countable ordinals. A Borel map is one for which the preimage

of any open set is a Borel set.

Analytic sets (also known as Suslin sets) are continuous images of Borel sets, but

they need not be Borel themselves (more about this later). The complement of an
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analytic set is called co-analytic. The sets in parts (3) and (4) of Theorem 1.1, and

in Theorem 1.2, turn out to be co-analytic complete, a condition we will define in

Section 5, and that implies that they are non-Borel in a strong sense.

The removable sets in the first three cases of Theorem 1.1 all form σ-ideals of

compact sets, i.e., they are closed under taking compact subsets and under compact

countable unions. The subset property is obvious, and the fact that a compact set

that is a countable union of compact removable sets is also removable is proven in

[64] for each of these three classes. The dichotomy theorem for co-analytic σ-ideals

(e.g., Theorem IV.33.3 in [35]) then says these collections must be either Gδ or co-

analytic complete in 2S. Theorem 1.1 indicates which possibility occurs in each case.

It is not known whether the CH-removable sets form a σ-ideal; indeed, it is not even

known if the union of two overlapping CH-removable sets is CH-removable. If the

sets are disjoint, then this is true, but is remains open even if both sets are Jordan

arcs sharing a single endpoint. The proof of Theorem 1.1 shows that the collection

of CH-removable sets is co-analytic complete, and this fact adds some additional

evidence that these sets may form a σ-ideal.

Although it is a basic theorem of descriptive set theory that every uncountable

Polish space X contains analytic and co-analytic sets that are not Borel (see Section

4), it is very interesting to obtain “natural” examples. For example, if X = C([0, 1])

(continuous functions on [0, 1] with the supremum norm) the following subsets of

functions are all known to be co-analytic complete, and hence non-Borel:

• everywhere differentiable [47],

• differentiable except on a finite set [57] or countable set [27],

• nowhere differentiable [46],

• everywhere convergent Fourier series [3].

For the space C([0, 1])N of sequences of continuous functions on [0, 1] the space CN

of everywhere convergent sequences is co-analytic complete, as is the space CN0 of

sequences converging to zero everywhere. See Theorem IV.33.11 of [35] by Kechris. A

famous result of Hurewicz [31] says that the collection of countable, compact subsets

of I = [0, 1] is co-analytic but not Borel in 2I with its Hausdorff metric. See Theorem

5.6. Other known examples of non-Borel subsets of 2I are:

• sets of uniqueness [36],
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• sets of strict multiplicity [34].

A closed set E ⊂ T is a set of uniqueness if any trigonometric series that converges

to zero everywhere off E must be the all zeros series. E is a set of strict multiplicity

if it supports a measure whose Fourier coefficients tend to zero; the Fourier series of

such a measure shows that its support is not a set of uniqueness in a strong way.

These particular examples have an intimate connection to the foundations of modern

mathematics: Cantor showed that finite sets are sets of uniqueness, and the problem

of extending this to infinite sets led him to the creation of set theory. For more about

this fascinating episode in the history of mathematics, see e.g., [17], [18], [44], [58].

For further “natural” examples of non-Borel sets from analysis and topology, see [6]

by Howard Becker.

This note was prompted by email discussions with Guillaume Baverez, in which he

proposed a possible characterization of CH-removable Jordan curves in terms of their

conformal weldings. I doubted such a concise criterion could be given, and eventually

I found a counterexample to his conjecture, but the interchange raised the question

of quantifying the difficulty of the problem. This paper was written in the hope that

gathering the basic facts needed from descriptive set theory might be of interest to

fellow complex analysts, and perhaps motivate some of them to attack other variants

of these problems, e.g., those discussed in Sections 7, 10 and 11.

I thank Alex Rodriguez for carefully reading the manuscript and locating many

typos and small errors that I had missed (any remaining mistakes are my own re-

sponsibility). Also many heartfelt thanks to Dimitrios Ntalampekos for many detailed

and very helpful comments that improved this paper in various ways. In addition

to spotting a number of typos and minor errors, he suggested shorter proofs of some

statements, and strengthened the statement of Theorem 1.2. The original version of

this result only claimed that A-removable curves formed a non-Borel set, but Dim-

itrios observed that the same proof also works for CH-removable curves, if we make

use of a result of Jang-Mei Wu [63] that I was unaware of. This is a substantial

improvement of the paper, answering a question posed in the original version.
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2. H∞-removability is “easy”

As we shall explain below, identifying removable sets isn’t exactly easy in the usual

sense, but in terms of descriptive set theory the collection of such sets is pretty simple.

Lemma 2.1. The collection of H∞-non-removable subsets of S = [0, 1]2 is an Fσ

subset of 2S. The H∞-removable sets are therefore a Gδ subset.

Proof. Suppose E ⊂ [0, 1]2 is non-removable for H∞. Then there is a non-constant,

bounded holomorphic function f defined on the complement of E. Near infinity, f

has a Laurent expansion

f(z) = c0 +
c1
z

+
c2
z2

+ . . .

and this has at least one non-zero coefficient ck for some k ≥ 1. If c1 = 0, the function

f1(z) = z(f(z)− c0) =
c2
z

+
c3
z2

+ . . .

is also bounded, non constant and holomorphic off E. Continuing in this way, we see

that we eventually obtain a bounded holomorphic function on Ω = C \ E that has

non-zero coefficient c1 in its Laurent expansion.

Let Xn be the collection of non-removable sets in [0, 1]2 whose complements support

a holomorphic function whose absolute value is bounded by 1 and whose Laurent

coefficient satisfies |c1| ≥ 1/n. We claim Xn is a closed set in 2S. Fix n and suppose

{Kj} ⊂ Xn are compact sets converging to K in the Hausdorff metric. Assume fj is

the holomorphic function on Kc
j attesting to its membership in Xn. Each compact

disk D in the complement of K is eventually contained in the complements of the

Kj for j large enough. Since |fj| ≤ 1 for all j, Montel’s theorem (e.g. Theorem 10.13

in [45]) implies that we may extract a subsequence that converges to a holomorphic

function fD on D. Covering Kc by a countable union of such disks and applying a

diagonalization argument, we may extract a subsequence converging to a holomorphic

function f bounded by 1. Applying the Cauchy integral formula to a fixed circle

surrounding [0, 1]2 we see that the Laurent coefficients of fj converge to the Laurent

coefficients of f and hence |c1(f)| ≥ 1/n. Thus K ∈ Xn. Since every non-removable

set is in some Xn, the collection of all non-removable sets is an Fσ in 2S. �

The proof that S-removable sets form a Gδ is very similar, but now the trick of

replacing f(z) by z(f(z)− c0) to get |c1| > 0 might not give a 1-to-1 map. Instead,
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we may assume the map is conformal off E and has an expansion f(z) = z + c1/z +

c2/z
2 + . . . so that ck 6= 0 for some k. Thus it suffices to prove each member of the

countable family Kn,k where |ck| ≥ 1/n is closed. We proceed as before, but now

we justify the use of Montel’s theorem slightly differently. Since fj is univalent on

{|z| > 2} and is normalized so that f ′(∞) = 1, Koebe’s distortion theorem (Theorem

I.4.1 of [24]) implies fj({|z| > r}) contains {|z| > 4r} for sufficiently large r. Thus fj

is uniformly bounded on {|z| ≤ r} for any r > 0, and hence is uniformly bounded on

any compact disk D ⊂ C. Thus we can apply Montel’s theorem on D, and complete

the proof as before.

Of course, just because H∞-non-removable sets are Borel in 2S does not mean

that it is an easy task to find an elegant characterization of them. Indeed, it is a

deep result of Xavier Tolsa [61] that E is non-removable for bounded holomorphic

functions if and only if it supports a positive measure µ of linear growth, i.e.,

µ(D(x, r)) ≤Mr,(2.1)

(for some M < ∞ and all x ∈ R2 and r > 0) and it has finite Menger curvature in

the sense that

c2(µ) =

∫ ∫ ∫
c2(x, y, z)dµ(x)dµ(y)dµ(z) <∞,(2.2)

where c(x, y, z) is the reciprocal of the radius of the unique circle passing through x,

y and z (linear growth implies (dµ)3 gives zero measure to the set were two or more

of x, y, z agree).

3. Analytic sets

A topological space X is called Polish if it is separable (has a countable dense set)

and has a compatible metric that makes it complete (Cauchy sequences converge).

Standard examples include Euclidean space Rn, the continuous functions on [0, 1] with

the supremum norm, C([0, 1]), and the collection of compact subsets of a compact

set K ⊂ Rn with the Hausdorff metric. Another important example is the Baire

space NN of infinite sequences of positive integers equipped with the metric given

by d((an), (bn)) = e−m, where m = max{n ≥ 0: ak = bk for all 1 ≤ k ≤ n}. One

can show NN is homeomorphic to the irrational numbers (with the usual topology)
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although they are different as metric spaces (one is complete and the other is not).

Every Polish space is the continuous image of the Baire space (Lemma B.1.2, [10]).

As stated in the introduction, the Borel sets in a topological space form the smallest

σ-algebra (i.e., closed under complements and countable unions and intersections)

that contains the open sets. A map is called Borel if the inverse image of any open

set is a Borel set. If follows that the preimage of any Borel set under a Borel map is

also Borel, and hence that the composition of Borel maps is a Borel map.

If X is a Polish space, then A ⊂ X is called analytic if there is another Polish

space Y and a Borel set E ⊂ X × Y so that A is the projection of E onto A, i.e.,

A = {x ∈ X : ∃ y ∈ Y such that (x, y) ∈ E}.

Clearly, any Borel set B ⊂ X is a projection of the Borel set B × X ⊂ X × X, so

Borel sets are clearly analytic. However, it is known that any uncountable Polish

space contains an analytic set that is not Borel (see Lemma 4.1), and several explicit

examples were already mentioned in Section 1.

Analytic sets are closed under countable unions and intersections (see [35] or Ap-

pendix B of [10]) but are generally not closed under taking complements, thus they

do not usually form a σ-algebra. If A ⊂ X is analytic, then Ac = X \ A is called

co-analytic. Borel images and preimages of analytic sets are also analytic. In de-

scriptive set theory, analytic sets are denoted Σ1
1 and co-analytic sets Π1

1 (using

light-faced characters refers to something else). These form the simplest elements

of the projective hierarchy of sets, much as closed and open sets are the simplest

sets of the Borel hierarchy. Analytic and co-analytic sets can be quite complicated,

e.g., although every uncountable analytic set contains a perfect subset, Gödel [28]

showed that this question for co-analytic sets is undecidable (similar to his results

for the Axiom of Choice and the Continuum Hypothesis). Similarly, all analytic sets

are Lebesgue measurable, but proving general projective sets are measurable requires

additional axioms, e.g., the assumption that certain “large cardinals” exist, e.g., see

Steel’s article [59].

There are several equivalent characterizations of analytic sets, including (see Sec-

tion 11.3 of [11])

(1) A is the projection of a closed set in X × NN,

(2) A is the continuous image of NN,
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(3) A is a continuous image of a Polish space,

(4) A is the continuous image of a Borel subset of a Polish space,

(5) A is the Borel image of a Borel subset of a Polish space.

In comparison, Borel subsets of a Polish space are characterized as follows (see The-

orem 11.12 of [11])

(1) a continuous 1-to-1 image of NN,

(2) a continuous 1-to-1 image of a Borel subset of a Polish space,

(3) a 1-to-1 projection of a closed set in X × NN,

(4) both a co-analytic and analytic set (see below).

Analytic sets are also known as Suslin sets in honor of Mikhail Yakovlevich Suslin,

who proved that a set is Borel if and only it is both analytic and co-analytic. While

a research student of Lusin in 1917, Suslin constructed a Borel set in the plane whose

projection on the real axis is not Borel, contradicting a claim in a 1905 paper of

Lebesgue (Cooke [17] refers to Lebesgue’s error as “one of the most fruitful mistakes

in all the history of analysis”). Suslin died of typhus in 1919 at the age of 24, having

published just one 4-page paper while alive, and one posthumously with Sierpinski.

His work was further developed by Lusin1, Sierpinski2 and others, and Suslin’s legacy

remains very active a century later.

To prove that the conformally non-removable subsets of S = [0, 1]2 form an analytic

subset of the hyperspace of S, we first record a few simple facts.

Lemma 3.1. For any Borel map f : X → Y between Polish spaces, the graph of f

is a Borel set in X × Y .

Proof. It suffices to prove the complement of the graph is Borel. Since Y is separable,

there is a countable basis {Bk} for the topology. Thus given any x ∈ X and y ∈ Y
so that y 6= f(x) there is a basis element Bk so that f(x) ∈ Bk and y 6∈ Bk. In other

words, (x, y) is contained in the Borel product set f−1(Bk)× (Y \Bk) ⊂ X × Y and

1In 1936 Lusin was the victim of a political attack that included charges of taking credit for
Suslin’s work and publishing too much in Western journals. Lusin survived the incident and was
officially rehabilitated in 2012. See [21], [42]. However, Lusin’s thesis advisor, Egorov, died in 1931
following a hunger strike in prison after similar attacks.

2According to [17], although Sierpinski was technically under arrest in Moscow during World War
I as an Austrian citizen, he was allowed to participate in the academic life of Moscow University.
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this set is disjoint from the whole graph of f . Thus the complement of the graph of

f is a countable union of Borel sets, and hence it is Borel itself. �

Lemma 3.2. Suppose K ⊂ C is a compact set and suppose A is an analytic subset

of 2K (i.e, A is a collection of compact subsets of K). Then the collection of compact

subsets of K that each contain some element of A (i.e., the collection of supersets of

A) is also an analytic subset of 2K.

Proof. Since A is analytic, it is the continuous image of some Polish space X, say

A = f(X). Define a map φ : X × 2K → 2K × 2K → 2K by (x,E) 7→ (f(x), E) 7→
f(x) ∪ E. The first map in the composition is continuous since f is assumed to be

continuous. The second map is continuous since it is easy to check that taking unions

is a continuous map from 2K × 2K → 2K . Thus φ(X × 2K) is the continuous image

of a Polish space (because products of Polish spaces are also Polish), and hence it is

an analytic subset of 2K . However, the image is exactly the collection of all possible

unions of sets in A with compact subsets of K, and hence it is precisely the collection

of all supersets elements of A (compact subsets of K containing an element of A). �

For a compact set K ⊂ C, we say U ⊂ K is relatively open in K if U = K ∩ V for

some open set V ⊂ C.

Lemma 3.3. Suppose X is a Polish space. Suppose K ⊂ C is compact and that each

relatively open U ⊂ K is associated to a closed set X(U) ⊂ X. Moreover, assume

that ∩αX(Uα) = X(∪αUα) for any collection of relatively open subsets {Uα} of K.

Then the map Λ from points of X to compact subsets of K defined by

Λ : x→ Kx = K \ ∪{U : x ∈ X(U)},

is a Borel map from X to 2K.

Proof. Note that if V ⊂ W are relatively open sets, then V ∪W = W , and hence

X(V ) ⊃ X(V ) ∩X(W ) = X(V ∪W ) = X(W ),

so our map has a “reverse monotone” property. For each closed set E ⊂ K and ε > 0

consider the open ball in 2K

B(E, ε) = {F ⊂ K : dH(F,E) < ε}
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These form a basis of the topology of the hyperspace 2K , so it suffices to show

preimages of such sets are Borel. Each such set is a countable union of closed balls

B(E, δ) = {F ⊂ K : dH(F,E) ≤ δ},

for some sequence of δ’s tending up to ε. Thus it suffices to show that sets of the

form Λ−1(B(E, δ)) are Borel, i.e., {x ∈ X : dH(Kx, E) ≤ δ)} is a Borel subset of X.

Let N(E, δ) = {y ∈ C : dist(y, E) ≤ δ} and similarly for N(Kx, δ). It is easy to

check that the condition dH(Kx, E) ≤ δ holds for some x ∈ X if and only if x is in

the intersection of the sets Y1 = {x : Kx ⊂ N(E, δ)} and Y2 = {x : E ⊂ N(Kx, δ)}.
Hence it suffices to show both Y1 and Y2 are Borel.

First consider Y1. We claim that x ∈ Y1 if and only if x ∈ X(U) where U =

{z : dist(z, E) > δ}. Suppose x ∈ X(U). Then Kx is in the complement of U , and

hence every point of Kx is within distance δ of E, i.e., Kx ⊂ N(E, δ). Hence x ∈ Y1.
Conversely, suppose x ∈ Y1. Then any point y ∈ U is strictly more than distance δ

from E and so y cannot be in Kx. Therefore y is in one of the relatively open sets (call

it Uy) that was subtracted from K in the definition of Kx, and hence x ∈ X(Uy).

Thus x ⊂ ∩y∈UX(Uy) = X(∪y∈UUy). Since every point of U is in this union, we

have U ⊂ ∪y∈UUy, so ∩y∈UX(Uy) ⊂ X(U) by the reverse monotone property. By

assumption, X(U) is a closed subset of X, so Y1 is closed, and hence it is Borel.

Next we consider Y2. The complement X \ Y2 consists of points x so that E

contains some point y that is strictly more than distance δ from Kx, i.e., Kx misses

some closed disk D′ = {z : |z ∈ C : |z − y| ≤ δ}. Thus the compact set Kx is a

positive distance from D′ and hence it also misses some closed disk D ⊃ D′ that is

centered at a rational point of the plane and that has rational radius > δ. For each

point z ∈ D ∩ K, z 6∈ Kx implies x ∈ X(Uz) for some relatively open set Uz ⊂ K

containing z, hence x ∈ ∩z∈D∩KX(Uz) = X(∪z∈D∩KUz) = X(VD) where VD is some

relatively open set containing D ∩K but disjoint from Kx. For each rational closed

disk chosen in this way, the corresponding set X(VD) is closed. If x ∈ X \ Y2, then

it is in one of these closed sets and hence X \ Y2 is contained in the union of these

countably many closed sets. Conversely, if x is in some X(VD), then Kx omits D and

hence every point of Kx is strictly more than distance δ from some point of E. Thus

X \ Y2 = ∪DX(VD) is Fσ, and hence Y2 is also Borel, as desired. �
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Next we want to specialize to the case when X is the space of homeomorphisms

of the 2-sphere to itself that are holomorphic off S = [0, 1]2 and normalized to be

h(z) = z + O(1/|z|) at infinity. The space of homeomorphisms of a compact Polish

space (like the 2-sphere) is always a Polish space itself, but in this case we can be more

explicit and take the metric d(f, g) = sup |f − g| + sup |f−1 − g−1|, where distances

are measured in the spherical metric. It is not completely trivial to find a countable

dense subset, but we sketch a proof, leaving a few details for the reader to verify.

Lemma 3.4. Let X denote the collection of homeomorphisms of the 2-sphere S2 to

itself that are holomorphic off S = [0, 1]2 and normalized to equal z + O(1/|z|) at

infinity. Then X contains a countable dense subset, i.e., any element of X can be

uniformly approximated by elements of this subset.

Proof. First, by replacing f(z) by f(rz) where r > 1 is very close to 1, we may

assume f is also holomorphic on a neighborhood of ∂S, and thus each edge of ∂S

maps to an analytic arc under f . For n a positive integer, consider the vertices

Vn of a (1/n) × (1/n) square grid Gn inside S. If n is sufficiently large, then the

points f(Vn ∩ ∂S), taken in order around ∂S, define the vertices of a simple closed

polygon P , and the Riemann map g from the exterior of S to the exterior of P (fixing

∞) uniformly approximates f . By perturbing the vertices of this polygon slightly,

we may assume these vertices have rational coordinates, and that the map g still

uniformly approximates f . The fact that g uniformly approximates f uniformly on

compact sets outside S follows from the Carathéodory kernel convergence theorem

(e.g., Theorem 8.11 of [45]), and uniform convergence up to the boundary follows

from Rado’s theorem (e.g., Theorem II.5.2 of [29]).

Next consider the vertices of the grid Gn that are in the interior of S. Choose

η � 1/n, and within an η-neighborhood of each interior vertex v, perturb f so that

f(v) has rational coordinates, and the new map (still called f) approximates the

old one. For each edge e of Gn connecting two vertices v and w of Gn we want

to approximate f(e) by a finite polygonal path from v to w whose vertices all have

rational coordinates, and then map the edges of Gn to their corresponding polygonal

arcs. If n is large enough, then for any fixed ε > 0 the image under f of each square

in Gn has diameter less than ε/2. Thus we if can approximate each arc f(e) to within
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ε/4 by a polygonal arc, then any homeomorphic extension of f that maps the edges

of Gn to their corresponding polygonal arcs will approximate f to within ε.

If n is large enough and η is small enough, we may assume all the image vertices

are distinct, and are pairwise separated by a distance of at least some δ > 0. For

each vertex of Gn let Cv denote the circle of radius δ/100 around f(v). Each interior

vertex is the endpoints of four edges e1, e2, e3, e4 of Gn, and for each j = 1, 2, 3, 4, we

choose the last point pj of ej on Cv (here, the “last point” means the last time we

hit the circle as we travel along ej from v to the other endpoint of ej). We can then

connect v to each of the four points p1, p2, p3, p4 by line segments that meet only at v.

We do the same for vertices on ∂S, but now there may only be two or three adjacent

edges to consider.

We then approximate the subarc of ek from pk to the corresponding point qj on

the circle around the other endpoint w of ek. These subarcs are all compact and

pairwise disjoint, so they are all a positive distance from each other. Thus we can

approximate each in the Hausdorff metric by pairwise disjoint polygonal arcs, all

lying outside all of the circles Cv. Having done this, we can then slightly perturb the

arcs to assure that the vertices all have rational coordinates (we do not change the

coordinates corresponding to images of vertices of Gn, as these are already rational).

Now map each edge of the grid Gn homeomorphically to the corresponding polyg-

onal using the map that agrees with our previous choices on the vertices of Gn, and

that multiplies arclength by a constant factor. Finally, extend this map on the edges

of Gn to a homeomorphism of each square of Gn to the corresponding polygonal re-

gion defined by the images of the edges, e.g., using conformal maps, we can reduce to

extending a circle homeomorphism h to a homeomorphism of the interior disk, which

is trivial by the “radial extension” z → h(z/|z|) · |z|. Our mappings on adjacent

squares agree on the common boundary segments, so they define a homeomorphism

of S that agrees on ∂S with our holomorphic approximation. The final homeomor-

phism might not have the precise normalization z + O(1/z) near infinity, but it is

very close to this, and we can impose this form with a small dilation and translation.

The resulting collection of maps is countable, since each map is determined by a

finite collection of rational numbers and a forced renormalization. We leave to the
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reader the verification that the inverse of the homeomorphisms we have constructed

approximate the inverse of f . �

Lemma 3.5. The CH-non-removable subsets of S = [0, 1]2 form an analytic subset

of the hyperspace of [0, 1]2. Thus the removable sets are co-analytic.

Proof. Let X be the space of homeomorphisms of the 2-sphere to itself that are

holomorphic off S = [0, 1]2 and normalized to be h(z) = z + O(1/|z|) at infinity.

For each open set U ⊂ C let X(U) be the elements of X that are holomorphic on

U . Since uniform limits of holomorphic functions are holomorphic, this is a closed

subset of X. Moreover, if h is holomorphic on each set in a collection {Uα}, then it is

holomorphic on the union so X(∪αUα) = ∩αX(Uα). All the functions in this set may

be holomorphic on a strictly larger set, e.g., if the union has removable complement,

but this equality still holds, and simply gives an example where X(V ) = X(W ) even

if V is strictly contained in W .

For each h ∈ X, and let Uh = C\Kh be the largest open set so that h is holomorphic

on some neighborhood of every z ∈ Uh (alternatively, Uh is the interior of the set of

points where h′(z) exists). Lemma 3.3 says that h 7→ Kh from X to Y = 2K is a

Borel map, and Lemma 3.1 says its graph {(h,Kh)} is a Borel set in X × Y . Hence

the projection onto the second coordinate gives an analytic set A = {Kh : h ∈ X}
(projections of Borel sets are analytic). By definition, a compact subset of K is

conformally non-removable if and only if it contains a non-empty set in A. Removing a

point from an analytic set gives another analytic set, so by Lemma 3.2 the supersets of

non-empty elements of A form another analytic set. Thus conformally non-removable

sets are analytic in 2K . �

Lemma 3.6. The A-removable subsets of S = [0, 1]2 are co-analytic in 2S.

Proof. This is exactly the same as the proof of Lemma 3.5, except that now we

work in the Polish space of all continuous functions on the Riemann sphere that are

holomorphic off [0, 1]2, normalized to have supremum norm 1. This space is complete

with the usual supremum metric, and a countable dense set is not hard to construct,

e.g., one can copy the proof of Lemma 3.4 up to the point where we approximate

by a function taking rational values on the vertices of the grid Gn, then triangulate
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these vertices and and use affine maps on the triangles. (This is much easier than

before, because we do not need to produce 1-to-1 maps.)

As before, the map sending each such function to the complement of the set where

it is holomorphic is a Borel mapping of this Polish space into 2S, and the projection

of its graph onto the second coordinate gives an analytic subset of 2S. Taking all

supersets of all non-empty projections gives all A-non-removable sets, and shows this

collection is analytic. �

4. Analytic non-Borel sets exist

The following is standard result, but we include the simple proof for completeness.

We follow the argument in Section 11.5 of [11].

Lemma 4.1. NN contains an analytic set that is not Borel. Thus the complement of

this set is co-analytic and not Borel.

Proof. This is a diagonalization argument. We claim it that suffices to show there is

an analytic subset X ⊂ NN × NN so that every analytic subset A ⊂ NN occurs as a

slice A = Xy = {x ∈ NN : (x, y) ∈ X}, for some y. Given such a set X, then

B = {x ∈ NN : (x, x) ∈ X}

is the projection of the intersection of X with the (closed) diagonal of NN × NN and

hence is the continuous image of an analytic set, and therefore is itself analytic. The

complementary set Bc = {x ∈ NN : (x, x) 6∈ X} is automatically co-analytic, and if

Bc were also analytic, then it would be equal to a slice Xy of X for some y. Thus,

Xy = {x : (x, y) ∈ X} = Bc = {x : (x, x) 6∈ X}.

However, in this case

y ∈ B ⇒ (y, y) ∈ X ⇒ y ∈ Xy = Bc

and

y ∈ Bc ⇒ (y, y) 6∈ X ⇒ y 6∈ Xy = Bc ⇒ y ∈ B,

so assuming either y ∈ B or y ∈ Bc both lead to contradictions. Thus Bc can’t

be analytic, and hence neither B nor Bc is Borel (since Borel sets are closed under

complements, and all Borel sets are analytic). Thus we have reduced proving the
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existence of a non-Borel analytic set to finding an analytic set X ⊂ NN × NN which

has every analytic subset of NN as a slice.

First we show this is possible for closed slices. The idea is that we can encode any

closed set by the list of open basis elements it misses. More precisely, if Y is a Polish

with a countable basis {Bk} for the topology, and if y ∈ Y , then let S(y) ⊂ N be the

set of all natural numbers k with y 6∈ Bk. Then set T (y) ⊂ NN to be the collection

of all the sequences with elements in S(y), i.e., T (y) = S(y)N.

Consider the set Z = {(y, s) ⊂ Y × NN : y ∈ Y, s ∈ T (y)}. First, we claim that

every closed set F ⊂ Y occurs as a slice of Z. To prove this, let S(F ) ⊂ N be the set

indices k of basis elements Bk missing F . Fix the second coordinate of Z to be some

sequence s ∈ NN whose union of elements is exactly the countable set S(F ). If (y, s)

is any point in this slice, then we must have s ∈ S(y), and so y misses every open

basis set Bk that misses F (and possible others), so y ∈ F . Conversely, if y ∈ F ,

then S(F ) ⊂ S(y), so s ∈ S(F )N ⊂ S(y)N, and hence (y, s) is in Z. This proves every

closed set F ⊂ Y occurs as a slice of Z.

Next, we claim Z is a closed subset of Y ×NN. Consider yn → y in Y and zn ∈ T (yn)

with zn → z in NN. We need to show z ∈ T (y). If yn → y and yn 6∈ Bk for large n,

then y 6∈ Bk, since Bc
k is closed. Hence an integer is in S(y) if it is in S(yn) for all

sufficiently large n (the converse need not be true). Since zn → z in NN, it converges

coordinate-wise, and so if the kth coordinate of zn is in S(y) for all large enough n,

the same is true for z, i.e., z ∈ T (y), as desired, proving Z is closed.

Finally, to obtain every analytic subset of NN as a slice, we apply the previous

argument to Y = NN×NN to get a closed set X ⊂ Y ×NN = (NN×NN)×NN so that

every closed subset of (NN)2 occurs as a slice of X. Hence every analytic subset of

NN occurs when we project X onto the first coordinate. Projections of analytic sets

are analytic, so projecting X onto the first and third coordinates gives an analytic

subset of NN ×NN, whose first coordinate ranges over all analytic subsets of NN. �

Note that this implies the cardinality of the analytic subsets of a Polish space is at

most the cardinality of NN, i.e., the same as R, the continuum c. Since single points

are analytic sets, the analytic subsets of R have cardinality exactly c. In particular,

the collection of all Borel subsets of R also has cardinality c.
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5. Co-analytic complete sets

A co-analytic subset A ⊂ X of a Polish space is called co-analytic complete if for

any co-analytic set B of NN there is a Borel map f : NN → X so that f(y) ∈ A iff

y ∈ B, i.e., B = f−1(A). Thus membership in any such B can be reduced to checking

membership in A.

Lemma 5.1. If f : X → Y is a Borel map between Polish spaces, if A is co-analytic,

and if f−1(A) is co-analytic complete in X, then A is co-analytic complete in Y .

Proof. If B ⊂ NN is co-analytic, then there is a Borel map g : NN → X so that

B = g−1(f−1(A)), since f−1(A) is co-analytic complete. Thus h = f ◦ g is a Borel

map from NN to Y and B = h−1(A). Hence any co-analytic set B in NN is a Borel

preimage of A, and hence A is co-analytic complete. �

Lemma 5.2. A co-analytic complete set cannot be Borel.

Proof. Let B ⊂ NN be a non-Borel, co-analytic set (such exist by Lemma 4.1). If

A ⊂ Y is co-analytic complete, then, by definition, there is a Borel f : NN → Y so

that B = f−1(A). But Borel inverse images of Borel sets are Borel, so A cannot be

Borel since B is not Borel. �

Therefore a simple strategy for proving A ⊂ X is not Borel is to find a Borel map

f : Y → X so that B = f−1(A) ⊂ Y is a known co-analytic complete set in Y . If A

is co-analytic, then Lemmas 5.1 and 5.2 imply A is not Borel. If A is not co-analytic,

then it is automatically not Borel (all Borel sets are both analytic and co-analytic).

To make this work, we need one co-analytic complete set to start from. A standard

choice is the collection of well-founded trees, which we define next.

Let N∗ be the set of finite sequences of natural numbers (including the empty

sequence). A tree T is a subset of N∗ that is closed under removing the final element,

i.e., if a finite sequence is in T , so is every initial segment, including the empty

one (this labels the root vertex of T ). An infinite branch of T is an element of

NN, all of whose finite initial segments belong to T . The set of all infinite branches

of T is denoted [T ] (this is also sometimes called the boundary of T and denoted

∂T , but we will not use this alternate notation). A tree is well-founded if it has no

infinite branches. Finite trees are obviously well-founded, and the infinite set of finite
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sequences (n, n − 1, n − 2, . . . , 1) with n ∈ N, together with all initial segments of

these sequences, form an infinite well-founded tree. See Figure 1.

1 3 4

2,1 3,2

3,2,1 4,3,2

4,3

4,3,2,1

0

2

Figure 1. An example of a well-founded tree. It is an infinite tree,
but has no infinite branches.

The sequence spaces 2N and NN each have a product topology which is metrizable

with the metric

d({ak}, {bk}) =
∞∑
k=1

|ak − bk|
2k(1 + |ak − bk|)

.

Since N∗ is countable and a subset can be identified with its indicator function,

any tree can be identified with a point of 2N, i.e., the Cantor set of infinite binary

sequences. In fact, the set of all trees corresponds to a closed subset of 2N, that we

will denote XT . Thus XT is a Polish space itself (it is also a Cantor set, since no

tree is isolated in the induced topology). However, we will show that the collection

of well-founded trees is co-analytic complete, and hence non-Borel, in this space. To

prove this, we will use the following result (Lemma 11.22 of [11]).

Lemma 5.3. Every closed set in NN is of the form [T ] for some tree T . For every

analytic set A ⊂ NN there is a tree T so that a = (a1, a2, . . . ) ∈ A if and only if there

is some b = (b1, b2, . . . ) ∈ NN so that the “weaving map” satisfies

W (a, b) = (a1, b1, a2, b2, . . . ) ∈ [T ].

Proof. The first part is straightforward (this argument was suggested by Dimitrios

Ntalampekos, shortening the original proof). Suppose K ⊂ NN is closed, and let T

be the tree of all finite initial segments of all elements in K. By definition, each
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element of K corresponds to an infinite branch of the tree T . Conversely, if x =

(x1, . . . , xn, . . . ) ∈ NN corresponds to an infinite branch of T , then we wish to show

that x ∈ K. By the definition of T , for each fixed n ∈ N we can find a sequence

y(n) ∈ K whose first n entries agree with (x1, . . . , xn) (because each initial segment

has “children”). Thus, y(n) converges to x in the product topology of NN. Since K

is closed, we have x ∈ K.

To prove the second part of the lemma, note that NN×NN is homeomorphic to NN

by the 1-1, continuous map that interweaves sequences:

W : (a1, a2, . . . )× (b1, b2, . . . ) 7→ (a1, b1, a2, b2, . . . ).

Thus, if A has the form given in the lemma, then it is the projection onto the first

coordinate of the closed set W−1([T ]) ⊂ NN×NN, and hence A is analytic (note that

W−1([T ]) is closed since [T ] is closed and W is a homeomorphism).

Conversely, if A is analytic, then it is a continuous image A = f(NN) and hence A is

the projection of the closed set (f(x), x) ∈ NN×NN (recall that graphs of continuous

functions are closed sets). Since W is a homeomorphism, the W -image of this closed

graph gives a closed set in NN. Applying the first part of this lemma gives a tree T

corresponding to A that satisfies the interweaving condition in the lemma. �

Note that we have actually proved something stronger than was claimed: A is

analytic if and only if there exists a tree T so that A is the projection of W−1([T ]) to

the first coordinate. Also note that the weaving map W : NN×NN → NN used above

can also be defined as a map W : NN × N∗ → N∗ by truncating {an} as follows:

W ({ak}∞1 , {bk}n1 ) = (a1, b1, a2, b2, . . . , an, bn) ∈ N∗.

We will use this definition in the proof Lemma 5.5 below.

Lemma 5.4. The well-founded trees are a co-analytic subset of XT .

Proof. It suffices to prove the ill-founded trees (those containing an infinite branch)

form an analytic set. Consider the set Z = {(T, x)} ⊂ XT × NN such that x is

an infinite branch of T . The projection of Z onto the first coordinate gives all ill-

founded trees, so these trees will form an analytic set if Z is closed in XT × NN.

Suppose Tn → T ∈ XT and xn → x ∈ NN in the product topologies. Then any

initial segment of x is an initial segment of xn for all sufficiently large n. Thus this
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segment is a vertex of Tn for all large enough Tn and hence also of T . Since every

initial segment of x is a vertex of T , x is an infinite branch of T . Thus Z is closed,

ill-founded trees are analytic and well-founded trees are co-analytic. �

Lemma 5.5. The well-founded trees are a co-analytic complete subset of XT .

Proof. Recall that XT ⊂ 2N denotes the set of trees. By Lemma 5.4, the well founded

trees are co-analytic, so it suffices to verify the other part of the definition: given any

co-analytic set B ⊂ NN, there is a Borel map of NN to XT so that B is the inverse

image of the well founded trees.

Let A = Bc. By definition, A is analytic, so by Lemma 5.3 there is a tree T so

that a = (a1, a2, . . . ) ∈ A iff W (a, b) ∈ [T ] for some b = (b1, b2, . . . ) ∈ NN. Using

T , we define a map NN → XT as follows. For a = (a1, a2, . . . ), we let T (a) denote

the collection of all finite sequences {bk}n1 (including the empty sequence) so that

W (a, b) ∈ T (W as defined just before Lemma 5.4). Clearly T (a) is a tree. Moreover,

a sequence a ∈ NN belongs to B = Ac if and only if W (a, b) 6∈ [T ] for all b ∈ NN.

Thus a ∈ Ac if and only if T (a) has no infinite branches, i.e., if and only if T (a) is a

well-founded tree.

To finish the proof, we verify that the map a 7→ T (a) is Borel. Recall that XT ⊂ 2N,

and that a basis for the topology consists of specifying a finite initial segment of a

sequence, and allowing the remaining elements to be free. The inverse image of such

a basis element is the collection of all infinite sequences a ∈ NN, so that

(1) interweaving the initial elements of a with the specified elements of the basis

gives a finite string in T , and

(2) there is some continuation of the specified elements to an infinite sequence so

that interweaving is a branch of T .

Thus a is simply the sequence of odd coordinates of branches of T that passes through

the specified vertex. The collection of all such sequences is a closed set in NN. Thus

the inverse image of a general open set in 2N is a countable union of closed sets, and

hence the mapping a→ T (a) is Borel. �

Theorem 5.6 (Hurewicz, [31]). The compact countable subsets of I = [0, 1] are

co-analytic complete in 2I .
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Proof. First we must show this collection is co-analytic or, equivalently, that the

uncountable compact subsets of I form an analytic subset of 2I . We use the fact that

every compact, uncountable set K supports a non-atomic probability measure µ, and

hence the function f(x) = µ([0, x]) is continuous, increasing, f(0) = 0, f(1) = 1 and

is constant on each connect component of [0, 1]\K. Consider the set Z = {(K, f)} ⊂
2I×C([0, 1]), where f and K are related as above: f is continuous, f(0) = 0, f(1) = 1

and f is constant on the complementary components of K. Projection onto the first

coordinate gives all uncountable compact sets, so it suffices to show Z is closed. Thus

we need to show that if Kn → K in the Hausdorff metric, and if fn → f uniformly,

then f is constant on the complementary components of K. However, any two points

x < y in such a component define a compact interval [x, y] that is a positive distance

from K, and hence is outside of Kn for large enough n, and thus fn(x) = fn(y) for

all large enough n. Taking limits gives f(x) = f(y), as desired.

Next we show the collection of compact, countable sets is co-analytic complete. By

Lemma 5.1, it suffices to show that there is a continuous map from the space of trees,

XT , into 2I , so that the image of a tree T is a countable subset of I if and only if T

is well-founded. For each n = 1, 2, . . . , let An = {x ∈ [0, 1] : 1
2n+1

≤ |x − 1
2
| ≤ 1

2n
}.

Then the An are all disjoint and each set consists of two compact intervals. For any

S ⊂ N, define

AS = {1

2
} ∪

⋃
n∈S

An.

This is a compact subset of [0, 1], and equals {1/2} if and only if S is empty.

Suppose we are given a tree T . The root vertex (labeled by the empty string) is

associated to E0 = I∅ = [0, 1]. In general, suppose En is a compact subset of [0, 1]

whose connected components are a countable number of points labeled by strings

of length < n, and a countable number of non-trivial closed intervals Is labeled by

strings of length n. All strings that occur as labels of intervals in En correspond to

labels of vertices in level n of T , and for each such label, 2n intervals in En will have

that label. To construct En+1 from En, we keep every point component from En (and

leave the label the same) and replace each interval component Js labeled by a string

s of length n by LS(AS), where S is the set of integers that can be appended to S to

give a length n+1 string in T (i.e., these correspond to the edges leading out of vertex

s), where AS is as above, and where LS is a linear map from J to Js. Since each An
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consists of two intervals, each nth generation interval with a given label gives rise to

two intervals in the next generation with identical labels. Let ET = ∩En. Since the

En are nested compact sets, this is a non-empty compact subset of [0, 1].

If T has an infinite branch, then following this branch through the construction

gives a Cantor subset of E, hence E is uncountable. Conversely, if E is uncountable,

then E∩J1 must be uncountable for one of the countably many connected components

of E1. Then E ∩ J2 must be uncountable for one of the countably many components

of E2 contained in J1. Continuing in this way, we obtain nested, non-degenerate

components J1 ⊃ J2 ⊃ J3 ⊃ . . . whose labels form an infinite branch of T , so T is

not well-founded. It is easy to check that the map from trees to sets, described above,

is continuous: if two trees are very close, then the construction of the corresponding

sets is the same, except inside a union of intervals, each of which have small length,

so the sets are close in the Hausdorff metric. �

The endpoints of all the components of En in the previous proof are rational

numbers. Thus we could reformulate the result to say that compact subsets of Q∩ I
are co-analytic complete in 2I (one first uses Lemma 3.2 to show that the collection

of compact sets containing at least one irrational number is analytic in 2I , so the

compact subsets of Q is co-analytic).. Theorem 5.6 also gives a rather concrete

example of a non-Borel set in [0, 1]. Let {rn} be an enumeration of Q∩ [0, 1] and for

K ∈ 2I define

f(K) =
∑
rn 6∈K

3−n.

Clearly f is 1-to-1 (since distinct sums of powers of 3 are distinct). The sets {K :

f(K) > α} are easily checked be open in 2I , so f is Borel. Thus

X = {f(K) : K ⊂ Q ∩ [0, 1] and is compact } ⊂ [0, 1]

cannot be Borel. An earlier “explicit” non-Borel set, given in terms of continued

fractions expansions, is due to Lusin [43]

Dimitrios Ntalampekos pointed out that the existence of a non-Borel set depends

on the Axiom of Choice, and he asked where we have used this. In fact, we have

utilized it from the beginning, as many of the basic facts about analytic sets depend

on choice, e.g., Suslin’s proof that a set that is both analytic and co-analytic must

be Borel. Without choice, it is consistent with Zermelo-Fraenkel set theory that the
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real numbers are a countable union of countable sets, in which case every subset of

the reals is Borel. For a discussion (and citations) of “how much” choice is needed

to construct non-Borel sets, see the Math Overflow discussion [13]. Also see [22] for

a related development of measure theory without the Axiom of Choice.

6. A-removable sets are co-analytic complete

We start with a well known fact from complex analysis.

Lemma 6.1. If E ⊂ [0, 1] has positive length, then it is H∞-non-removable.

Proof. If E is an interval, then we simply apply the Riemann mapping theorem to

conformally map the complement of E (on the sphere) to the unit disk. This gives a

non-constant bounded holomorphic function on the complement.

The general case was proven by Ahlfors and Beurling in [1] (or see Section I.6 of

Garnett’s book [23]). Note that if w = u+ iv

F (w) =

∫
E

dz

z − w
=

∫
E

dt

t− (u+ iv)

=

∫
E

(t− u+ iv)dt

(t− u− iv)(t− u+ iv)

=

∫
E

t− u
(t− u)2 + v2

dt+ i

∫
E

v

(t− u)2 + v2
dt

is holomorphic on Ω = Ec, has imaginary part in [−π, π], and Laurent expansion

`(E)/z+ c2/z
2 + . . . near infinity. Thus G = exp(F/2) takes values in the right half-

plane, (G− 1)/(G+ 1) maps Ω holomorphically into the disk, and one can compute

its leading Laurent coefficient to be c1 = `(E)/4 > 0. �

Extending this result from subsets of R to subsets of graphs Γ = {(x, f(x)} ⊂ R2 of

real Lipschitz functions f was a major breakthrough by Alberto Calderón [14], when

he proved the Lp boundedness of the Cauchy integral operator on Lipschitz graphs.

This led to many important developments in in harmonic analysis and geometric

measure theory over the last fifty years, including Tolsa’s result discussed in Section

2. For some of the related history, see [20], [50], [60], [62].

The following is stated and proved on page 117 of Carleson’s 1951 paper [15]:

Theorem 6.2. If E1, E2 ⊂ [0, 1] are compact and if E2 has positive Lebesgue measure,

then E = E1 × E2 is A-removable iff E1 is countable.
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Proof. For completeness, we recall the proof of both directions. If E1 is countable, the

removability of E1×E2 is due to Besicovitch [7], but we give a short proof suggested

by Dimitrios Ntalampekos that foreshadows remarks in the last section of this paper.

If E1 is countable, then E1 × [0, 1] is a compact set that is the countable union of

vertical slits. Each isolated slit is removable; this is a simple consequence of Morera’s

theorem (e.g. Theorem 4.19 of [45]). Removing those isolated slits, one ends up with

a new compact set E ′1 × [0, 1]. The set E ′1, if non-empty, is also countable, so must

have isolated points. Then one proceeds with transfinite induction on the rank of the

countable set E1 to get the removability.

Conversely, if E2 has positive length, then by Lemma 6.1 there is a non-constant

bounded analytic function f on the complement of iE2 with a positive Laurent coeffi-

cient c1. If E1 is uncountable, then it supports a non-atomic, positive, finite measure

µ. Therefore F (z) =
∫
f(z + x)dµ(x) is continuous on the sphere and holomorphic

off E = E1 × E2. The fact that

1

z − x
=

1

z
+ (

1

z − x
− 1

z
) =

1

z
+

x

z(z − x)
,

implies F also has non-zero Laurent coefficient c1 and hence is non-constant. There-

fore E is A-non-removable. �

Corollary 6.3. The A-removable compact subsets of S = [0, 1]2 are co-analytic com-

plete in 2S, hence not Borel.

Proof. We already know this set is co-analytic by Corollary 3.6. To prove co-analytic

completeness, by Lemma 5.1 it suffices to show that the mapping E 7→ E × [0, 1]

is continuous between the respective Hausdorff metrics and hence reduces the set of

countable compact subsets of [0, 1] to the set of A-removable sets. Since the former

is co-analytic complete by Theorem 5.6, so is the latter. �

7. CH-removable sets are co-analytic complete

The following is due to Fred Gehring [25] in 1960. We include a proof for the

reader’s convenience.

Lemma 7.1. For compact sets E ⊂ [0, 1], E × [0, 1] is CH-non-removable if and

only if E is uncountable.
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Proof. First suppose E is compact and uncountable. Then E supports a a positive,

finite, non-atomic measure µ. By restricting µ to an appropriate subset E0 of zero

Lebesgue measure and multiplying by an appropriate constant we may assume µ is

singular to Lebesgue measure, is supported in an interval J = [a, b] ⊂ [0, 1], and

has total mass equal to half the length of J . For a fixed constant c ∈ [0, 1] define

hc(x) = x outside J and

hc(x) = x+ c

(∫ x

0

dµ(t)− x− a
2

)
,

inside J . It is easy to check this is a homeomorphism that is linear with slope 1− c
2

on each component of J \ E0. On the other hand, hc maps E0 to a set of length

c`(J)/2 > 0. Let g(y) = max(0, 1
2
− |y − 1

2
|) and define

F (x, y) = (hg(y)(x), y).

See Figure 2. This is a homeomorphism of the plane that is the identity off J × [0, 1],

and for any component K of J \E0, F is a skew linear map on K× [0, 1
2
] and K× [1

2
, 1]

with uniformly bounded dilatation. Thus F is quasiconformal off E0× [0, 1]. It is not

quasiconformal on the whole plane because the zero length set E0 × {y} is mapped

to a set of positive length for each 0 < y < 1, and thus E0× [0, 1] is a set of zero area

that is mapped to positive area; this is impossible for quasiconformal maps, see e.g.,

[2]. Using the measurable Riemann mapping theorem, we can find a quasiconformal

mapping ϕ of the whole plane so that ϕ ◦ F is conformal off E × [0, 1] but not

quasiconformal everywhere, hence not conformal everywhere. Thus E× [0, 1] is CH-

non-removable.

Conversely, note that if E is CH-non-removable with witness f and if z0 6∈ E, then

g(z) = (f(z)− f(z0))/(z − z0)

is continuous, non-constant, and bounded on the plane and holomorphic off E, so

E is also A-non-removable. Thus A-removable sets are also CH-removable. Hence

by Theorem 6.2 if E is countable, then E × [0, 1] is CH-removable. (One could

also directly apply the same transfinite induction argument as given in the proof of

Theorem 6.2). �

Corollary 7.2. CH-removable sets in S = [0, 1]2 are co-analytic complete in 2S.
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Figure 2. If E is a Cantor set, then there is homeomorphism h
of C that is quasiconformal off E × [0, 1] and maps E × [0, 1] to a
set of positive area. This can’t happen if E has zero length and h is
quasiconformal on the whole plane.

The proof is the same as for A-removable sets, except using Gehring’s result in

place of Carleson’s.

Recently, Dimitrios Ntalampekos [48] has suggested a characterization of CH-

removable sets that is closely related to the characterization of S-removable sets due

to Ahlfors and Beurling. Given two continua F1andF2 inside an open planar domain

Ω, we consider the family Γ of rectifiable paths connecting F1 to F2. Given set E ⊂ C,

we can consider the sub-family ΓE of Γ consisting of paths that miss E. If for every

Ω, F1, and F2 as above, the extremal length of ΓE is the same as the extremal length

of Γ, then we say E is negligible for extremal distances, or “NED” for brevity. Ahlfors

and Beurling proved that a compact set E is S-removable if and only if it is NED

(see Theorems 6 and 9 of [1]).

Ntalampekos calls a set CNED (countably negligible for extremal distances) if Γ

always has the same extremal length as the sub-family consisting of paths that hit E

in at most countably many distinct points (we do not care how often each point of E

is hit by a path). In [48] he shows that several known families of CH-removable sets

are special cases of CNED sets, and conjectures that closed CNED sets are the same

as CH-removable sets. Corollary 4.4 of [48] says that if a closed set X ⊂ C is CNED,

then for any ε > 0, and for any two points x, y ∈ R2, there is a path γ connecting x

and y of length at most |x−y|+ ε so that γ∩X is countable (ignoring multiplicities).
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This clearly fails if X = E × [0, 1], and E ⊂ R is uncountable. Thus the proof of

Lemma 7.2 and the remarks following Lemma 5.2 show that the collection of CNED

sets is not Borel in 2S, where S = [0, 1]2. Moreover, it would be co-analytic complete

if it is co-analytic. Is this the case?

8. A-removable Jordan curves are co-analytic complete

A case of particular interest among compact planar sets are the closed Jordan

curves. Let Homeo(X, Y ) ⊂ C(X, Y ) denote the 1-to-1 continuous maps of X into

Y . It is easy to see that this subset is neither open nor closed in C(X, Y ). However,

a map f : T→ C is 1-to-1 if and only if any two disjoint closed dyadic intervals have

disjoint images (an open condition) and hence Homeo(T,C) is a Gδ set in C(T,C).

We can think of closed Jordan curves as elements of Homeo(T,C)/Homeo(T,T),

i.e., modulo re-parameterizations. Thus f, g ∈ Homeo(T,C) are equivalent if f = g◦ρ
for some ρ ∈ Homeo(T,T). We can define a metric between equivalence classes as

d([f ], [g]) = inf{‖f − g ◦ ρ‖∞ : ρ ∈ Homeo(T,T)},

although Jordan curves are not complete in this metric. A complete metric on Jordan

curves separating 0 and ∞ is described by Pugh and Wu in [52], by choosing a

particular parameterization of each curve. They attribute the idea to Thurston: one

takes conformal maps of S\T to S\Γ normalized to fix 0 and∞ respectively and that

have positive derivative at these points, and then use the supremum metrics between

conformal maps.

Theorem 8.1. The collection of A-removable Jordan curves contained in S = [0, 1]2

is co-analytic complete in 2S.

Proof. As in previous proofs, we first verify that the collection is co-analytic by

showing its complement is analytic. Consider the set Z of pairs (γ, f) where γ is a

non-removable closed Jordan curve and f is a continuous function on the 2-sphere

that is holomorphic off γ and has Laurent coefficient c1 = 1 (to confirm that it is

non-constant). Again, as before, it suffices to show Z is closed, so it suffices to show

that if γn → γ and fn → f then f is holomorphic off γ. This follows since uniform

limits of holomorphic functions are holomorphic, and any closed disk that misses γ

will miss γn for all sufficiently large n.
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As noted in Lemma 5.1, it suffices to construct a Borel map from some Polish space

into the space of Jordan curves, so that the preimage of the A-removable curves is a

known co-analytic complete set B. We will take the Polish space to be the set of trees

XT (defined in Section 5), and the preimage set to be the collection of well-founded

trees. The latter is co-analytic complete by Lemma 5.5.

To simplify some formulas, we work in [−1, 1]2 instead of [0, 1]2. We start with

a map from trees to compact subsets of [−1, 1] that maps well-founded trees into

countable sets, using a slightly different map than we did in the proof of Theorem

5.6. For n ∈ N, we define

An = {x :
1

4
+

1

2n+ 1
≤ |x| ≤ 1

4
+

1

2n
},

and for S ⊂ N

AS = {±1

4
} ∪

⋃
n∈S

An ⊂ [−1, 1].

This is similar to what we did in the proof of Theorem 5.6, except that now the

pairs of intervals An converge to two different points ±1/4, instead of a single point.

However, the rest of the construction is the same, and associates to each tree T a

compact set ET that is countable if and only if T is well-founded. Recall that each

string s of length n is associated to 2n intervals which we label Ijs , j = 1, . . . 2n. We

assume these are numbered left to right.

Next we construct a Cantor set K = ∩nKn ⊂ K0 = [−1, 1] of positive Lebesgue

measure where K0 ⊃ K1 ⊃ · · · ⊃ K and each Kn is a union of 2n disjoint closed

intervals which we denote {Kk
n}, k = 1, . . . , 2n. We assume that for a fixed n,

the components {Kk
n}2

n

1 are numbered left to right and that their maximum length

`n = maxk |Kk
n| tends to zero with n. For the current proof, we may assume that for

each n, every Kk
n has length `n = 2−n−1(1 + 1/n), so K has length 1/2.

Our Jordan curves will be constructed using templates that are closed sets GJ ,

where the index J ∈ {Kk
n} is one of the component intervals in the construction of

the Cantor set K. The largest J is J = [−1, 1] = K0 and we denote G[−1,1] by G0

for brevity. It is illustrated in Figure 3. In general, GJ consisting of countable union

of polygonal arcs, rectangles and copies of K. The rectangles are all of the form

I × J ′ where each I is some An, i.e., one of the component intervals of AN, and J ′ is

a component of one of the sets J ∩Km where m > j if J = Kk
j .
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Figure 3. The basic template G0 for the construction. Each sym-
metric pair of columns of rectangles corresponds to a positive integer.
The two dashed vertical segments (far left and far right) are only used
in the first step of the construction, to give a closed curve.

We attempt to describe Figure 3 in words. G0 has two copies of the Cantor set

K, positioned in the vertical lines {x = ±1/4}, near the center of the picture. There

are countably many rectangles, arranged in vertical columns which accumulate on

the two Cantor sets from the left and right respectively. Each positive integer k

corresponds to 2k+1 rectangles arranged in two columns. The integer 1 corresponds to

the two leftmost and two rightmost rectangles in Figure 3. The integer 2 corresponds

to the eight rectangles in the two columns adjacent to the first two, and so on.

More precisely, the 2k+1 rectangles associated to the integer k are the components of

Ak × Kn. The set Ak has two components and Kn has 2n components, giving the

correct number of rectangles in the product. Each rectangle is then connected to

three other rectangles in the two adjacent columns, and to one other rectangle in the

same column, all as shown in Figure 3. (Slightly different arcs are used to connect

the outermost rectangles to each other, as shown by dashed vertical segments at the

far left and far right of Figure 3.) For templates GJ other than G0 the construction

is exactly the same, except that Kn is replaced by Kn+j ∩ J if J = Kk
j . This is done

so that the limiting Cantor sets are all translates of the same fixed set K.
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Given these templates, we construct a Jordan curve Γ as an intersection Γ =

∩nΓn of compact connected sets each consisting of a countable union of rectangles,

polygonal arcs and copies of the Cantor set K. The steps of the construction are

controlled by the choice of a rooted tree T in XT ⊂ 2N, and is designed so that Γ will

be A-removable if and only if T is well-founded.

So suppose T is fixed. The construction always starts with a copy of G0 that has

two short polygonal arcs added at the far left and far right, to join the upper and

lower halves of the template set, making it connected. These are shown as dashed

segments in Figure 3, but occur as solid lines in several of the following figures.

We will induct over levels of the tree, starting at the root vertex (labeled by the

empty string) and at each stage of the construction, we will have a set Γn consisting

of a countable collection of rectangles joined by polygonal arcs and accumulating on

translates of the set K. At the nth stage, each rectangle R = I × J is labeled by a

n-long string of positive integers that is a label of some vertex v of the tree T . To go

from Γn to Γn+1, we replace each rectangle R in Γn by a rescaled copy of the template

GJ (rescaled affinely to exactly fit into R). If vertex v is a leaf of T (i.e., it has no

children), then every rectangle R′ in the rescaled copy of the template is replaced by

a pair of horizontal line segments that connect the vertical sides of R′ exactly at the

points where arcs of the template connect R′ to other rectangles in the template. If

v is not a vertex then there is a set of positive integers that when appended to the

label of v give labels of its children. For the template rectangles corresponding to

these integers we leave the rectangle alone. For the other integers (those that do not

correspond to children of v), we replace the corresponding rectangles with horizontal

line segments, as above. Doing this for every rectangle in Γn gives a closed connected

subset Γn+1 ⊂ Γn.

The simplest case is when the tree T has only one vertex (labeled by the empty

string). Then every rectangle of the template G0 is replaced by pair of horizontal

segments. The result is illustrated in Figure 4. Here, Γ is a closed Jordan curve that

is a countable union of polygonal arcs and two copies of the Cantor set K, and is

clearly an A-removable set.

The next easiest case is when we have a rooted tree with two vertices, say with

root labeled by the empty string and the single leaf labeled by “1”. If we replace the
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Figure 4. The curve corresponding to the single vertex rooted tree,
labeled by the empty string. This is a countable union of line seg-
ments and two linear Cantor sets and hence is A-removable. It is the
“simplest” curve in our collection.

four rectangles in G0 that correspond to the integer “1” with rescaled copies of G0,

the result is shown in Figure 5. Any curve corresponding to a tree that contains the

edge connecting the root to vertex “1”, will be a subset of the illustrated set. When

T consists only of this one edge, then every rectangle in Figure 5 is replaced by a

pair of horizontal edges, giving the closed Jordan curve shown in Figure 6. If the

second vertex was labeled “k” instead, the replacements would occur in corresponding

columns of the template.

Finally, we have to observe that the resulting curve is A-removable if and only if

the associated tree T is well-founded. If T is well-founded, then the final curve is

a countable union of line segments and linear Cantor sets and hence is A-removable

by one direction of Carleson’s theorem. If T has an infinite branch then the curve

contains a copy of E × K, where E is a Cantor set depending on the branch, and

thus it is non-A-removable by other direction of Carleson’s theorem.

Next, we will verify that the map from trees to curves is continuous from the

product topology on XT ⊂ 2N to the Hausdorff metric on 2S. Recall that each tree

is encoded by a binary sequence in 2N whose nth coordinate indicates whether nth
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Figure 5. The four rectangles corresponding to “1” in the template
have been replaced by rescaled copies of the template. Any curve con-
taining the vertices {∅, 1} will contain these arcs.

Figure 6. The curve corresponding to the tree with vertices {∅, 1}.
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Figure 7. The curve corresponding to the tree with vertices {∅, 1, 2}.
There are countably many segments and 10 copies of the linear Cantor
set K.

string (according to some fixed enumeration of N∗) is the label of some vertex of

the tree. If the encodings of two trees T1, T2 agree for the first N places, then the

two corresponding curves share the same templates for these vertices, and can only

disagree within the rectangles that are filled in later in the construction. However,

each time we apply a template, the rectangles the occur inside the replaced rectangle

have smaller diameter (tending to zero with both the length of the corresponding

string label, and the size of the last entry of the string). Thus the curves corresponding

to T1 and T2 agree except within a union of disjoint rectangles that each have small

diameter, and so that each curve contains some point in each rectangle. Thus the

Hausdorff distance between the curves is at most `N . Therefore, the set of well-

founded trees is the preimage of the set of A-removable curves under a continuous

map from XT into the hyperspace of [−1, 1]2. Hence this collection of A-removable

curves is co-analytic complete and, in particular, it is not Borel. �
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9. CH-removable Jordan curves are co-analytic complete

The logarithmic capacity, Clog(E), of a set E ⊂ [0, 1] is defined as the supremum

of the masses of positive measures µ supported on E so that the convolution µ∗ log 1
x

is bounded above by 1 on E (hence everywhere). This agrees with the definition in

Carleson’s book [16], but it disagrees with some other sources, such as [24], that define

logarithmic capacity as exp(−1/Clog(E)), and call 1/Clog(E) the Robin’s constant of

E. Both definitions give the same sets of zero capacity, but we prefer Carleson’s

approach here, as his version is sub-additive and the other is not. In [1], Ahlfors and

Beurling show that K ⊂ [0, 1] is S-non-removable iff Clog([0, 1] \ K) < Clog([0, 1]),

and that this implies that K has positive length (but not conversely). This result is

the basis for the following theorem.

Theorem 9.1. The collection of CH-removable Jordan curves contained in S =

[0, 1]2 is co-analytic complete in 2S.

Proof. In [63] Jang-Mei Wu proves that if K ⊂ [0, 1] is a Cantor set with the property

that the logarithmic capacity of [0, 1]\K is strictly less than the logarithmic capacity

of [0, 1], and if E is any Cantor set, then E×K is CH-non-removable. By the result

of Ahlfors and Beurling noted above, this is same as saying K is S-non-removable.

Since any uncountable closed set contains a Cantor set, we can use Wu’s theorem

and half of Lemma 6.2 to deduce that for a closed set E ⊂ [0, 1], the product E ×K
is CH-removable if and only if E is countable. Thus if we use such a Cantor set K in

the proof of Theorem 8.1, we obtain Theorem 9.1. (We also need to show these curves

form a co-analytic set, but this is essentially the same as for A-removable curves.)

To finish the proof, we construct a Cantor set K with the desired properties. Start

with K0 = [0, 1] and remove an open interval of length a0 centered at 1/2, leaving

two closed intervals as K1. In general, remove a centered, open interval of length an

from each component of Kn to obtain Kn+1, and let K = ∩nKn. One can easily show

the logarithmic capacity of an interval of length r is comparable to 1/| log r|, so the

sub-additivity of logarithmic capacity (see Lemma 4 of [16]), implies the logarithmic

capacity of [0, 1] \K, is at most O (
∑∞

n=0 2n/| log an|), which is as small as we wish if

a0 is small and we take an ↘ 0 fast enough. �
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As noted at the end of the introduction, this result is due to Dimitrios Ntalampekos,

who pointed out that the proof of Theorem 8.1 applies to CH-removable curves if we

simply take the Cantor set K to be one of the CH-non-removable sets constructed

by Jang-Mei Wu in [63].

The proof of Wu’s result in the general case is perhaps too long to replicate fully

here, but for the sake of completeness, we will sketch the construction of a single

Cantor set K with the property that E × K is CH-non-removable for any Cantor

set E. This is sufficient for a self-contained proof of Theorem 9.1. We roughly follow

Wu’s proof in [63] for the general case, but several steps simplify for our set (and we

do not need to recall as much potential theory).

Lemma 9.2. There is a Cantor set K ⊂ [0, 1] so that for a compact set E, the

product E ×K is CH-non-removable if and only if E is uncountable.

Proof. If E is countable, then the product is removable by Lemma 7.1, so we only

need to prove the other direction.

We start by building a sequence of nested compact sets H0 ⊂ H1 ⊂ · · · ⊂ C,

so that each set consists of finite number of horizontal line segments, each centered

on the y-axis. For each segment I in Hn, there will be a segment J on the y-axis

centered where I crosses the y-axis, and so that J hits no other points of Hn. To

begin the construction, we let H0 be just the single segment I = [−1, 1] ⊂ R and

let the associated vertical segment be J = [−i/2, i/2]. In general, given a non-trivial

segment I in Hn for n ≥ 2, we can define its associated vertical segment J as follows.

If I hits iR at iy, and if δI = dist(I,Hn \ I), then we can take J = i · [y − δI , y + δI ].

Next, let J ′ be the vertical segment concentric with J and one third the length.

Note that the collection of these smaller intervals J ′ from a single generation is

pairwise disjoint, and any two of them are separated by a open interval at least as

long as the longer of the two. Let R denote the rhombus that is the convex hull of

I ∪ J ′, and add 2n horizontal segments with endpoints on the boundary of R, with

heights evenly spaced over the top and bottom halves of J ′. The process is illustrated

in Figure 8. We define H to be the closure of ∪∞n=0Hn. Note that the vertical intervals

corresponding to two adjacent horizontal segments in Hn are not just disjoint, but

are separated by a non-trivial open interval which does not hit Hm for any m, and
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thus misses H. Thus iR \ H is open and dense, so the horizontal projection of H

onto iR is a Cantor set.

Figure 8. The left side shows two adjacent horizontal segments of
Hn. The vertical dashed line is the y-axis, the two diagonal dashed
lines are edges of a rhombus from the previous generation. The shaded
rhombuses are those corresponding to the two segments. On the right,
we show the horizontal segments of Hn+1 defined using these rhom-
buses. In the limit, we obtain a set H which contains uncountably
many horizontal line segments, all of which have zero harmonic mea-
sure from ∞.

Let Hr = {x+ iy : x > 0} denote the right half-plane, and let Hl = {x+ iy : x < 0}
be the left half-plane. Define Ω = Hr \H. This domain is simply connected, and so,

by the Riemann mapping theorem, it can be mapped to Hr by a conformal map f

that fixes ∞ and ±i. Let fn : Hr → Hr \ Hn. Then fn → f uniformly on compact

sets of Hr, and so the same is true for their derivatives. It is easy to check that if

fn = un + ivn, then vn(iy) is increasing on the preimages of iR \Hn and constant on

the preimage of each segment in Hn. Thus un has normal derivative > 0 on the former

set and = 0 on the latter. This implies Re(f ′n) > 0 on Hr, and hence the same is true

for f (the limit can’t be zero, for then f would be constant by Harnack’s inequality).

By Schwarz reflection, f can be extended to a conformal map of Ω = C \ H to a

domain W whose boundary is a Cantor set K on the y-axis. This is the set K we

are seeking.

We claim that K is a Cantor set. It is clear that K is closed and has no isolated

points, so we need only show its connected components are all points. To prove this,

suppose I is a component of Hn. It is easy to check from the definitions that the

distance from I to the closest distinct component of Hn is less than 1/n (actually it

is much smaller, less than 1/n!), and that adjacent components of Hn have length
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differing by at most 1/n. Thus each component I of Hn can be separated from ∞
in Hr by a crosscut γI of Hr that lies inside Ωn = C \ Hn, and such that γI can

be separated from ∞ by a crosscut σI of Ωn with diameter at most 4/n. For point

components x of Hn we can take σx = γx, and for segment components I, we choose

σI to connect endpoints of components of Hn that are adjacent to I, as illustrated in

Figure 9.

γ
I

σ
I

δ
I

I

=σ γ
x xx

Figure 9. Each component I of Hn is separated from infinity by
a crosscut γI of small harmonic measure, which implies its f -image
has small harmonic measure, hence small diameter in Hr. Reflecting
γI across the y-axis gives a loop around I in C \ Hn, and an infinite
nested family of such loops defines a unique connected component of
H. The f -images of these loops have diameters tending to zero, im-
plying every connected component of K is a point, and giving a 1-to-1
correspondence between points of K and connected components of H.

By the maximum principle, the harmonic measure of γI (from the point 2) is at most

the harmonic measure of σI , and the latter is bounded O(
√

diam(σI)) = O(n−1/2) by

corollary of Beurling’s projection theorem (e.g., Corollary III.9.3 of [24]). Thus by

conformal invariance, K can be separated from f(2) in Hr by a finite set of crosscuts

in Hr with endpoints outside K (namely, the f -images of γI), each of which has small

harmonic measure, hence small diameter. This implies K only has point components,

proving the claim.

We let F = f−1 denote the inverse conformal map from W = C \ K to Ω. The

argument in the previous paragraph also shows that F associates each point of K to

a component of H. More precisely, if zn → iy ∈ K then F (zn) can only accumulate

on the associated component of H. In particular, {Im(F (zn))} has a well defined
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limit, even if the real parts do not. Note that by symmetry

Im(F (x+ iy)) = Im(F (−x+ iy)).(9.1)

In particular, F restricted to R\{0} is a continuous, strictly increasing function, and

− lim
x↗0

F (x) = lim
x↘0

F (x) = 1,(9.2)

i.e., F has a jump of size 2 at the origin. The fact that F associates points of K

to components of H means that at other points of the y-axis, F can only have a

non-negative jump in the following sense: for any real number M ,

lim
x↘0

Im [F (x+ iMx+ iy))− F (−x− iMx+ iy)] = 0.(9.3)

The existence of F implies K is S-non-removable, and hence K has positive length

by the result of Ahlfors and Beurling mentioned just before Theorem 9.1. However,

we can give a direct proof of this as follows. Inside Ω+ = Hr \ H, the set H has

positive harmonic measure (the choice of base point in Ω+ is unimportant, but to

be concrete, we take z0 = 2). To see this, observe that I = [1/2, 1] has positive

harmonic measure in Hr \ I, and since I ⊂ H, the maximum principle implies H

has positive harmonic measure in Ω. Thus by conformal invariance, K has positive

harmonic measure in Hr, and thus it has positive length.

Suppose E is any Cantor set. We claim that E × K is CH-non-removable. By

restricting to a subset and translating we may assume E ⊂ [0, 1/10], and that E has

zero length (if E has positive length, there is nothing to do since E ×K has positive

area, and so it is CH-non-removable by the measurable Riemann mapping theorem).

Since E is uncountable, it supports a non-atomic probability measure µ. Let

G(z) =

∫
E

F (z + t)dµ(t).

It is easy to verify that G is continuous everywhere (it is the convolution of a locally

bounded function and a non-atomic measure) and is holomorphic off E ×K.

If G were a homeomorphism, and if E×K were CH-removable, then G extends to a

conformal homeomorphism of the plane to itself, and hence it would be a linear map.

However, it follows from (9.2) that F restricted to R can be written as the sum of a

continuous, strictly increasing function F1 and the jump function F2(x) = 1+sign(x).

The convolution of µ with the step function F2 is continuous and singular: it maps the

zero length E to a set of positive length. Adding the strictly increasing convolution
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of µ with F1 preserves this property, hence G = F ∗ µ is not a linear map. This

contradiction completes the proof of non-removability, once we know that G is a

homeomorphism.

It suffices to show that if z 6= w, then G(z) 6= G(w). This follows if

Re

(
G(z)−G(w)

z − w

)
> 0.

In fact, we will prove a uniform estimate

Re

(
G(z)−G(w)

z − w

)
≥ η(|z − w|) > 0.

where the lower bound only depends on the distance between z and w. Since G is

continuous, we only need to prove such a bound for a dense set of pairs so we may

assume Re(z) 6= Re(w) and neither z nor w is in E × R. Since G(z) is a convex

combination of the values {F (z + t)}, t ∈ E, it suffices to show that

Re

(
F (z)− F (w))

z − w

)
≥ η(|z − w|) > 0

when Re(z) < Re(w) and neither real part is zero. If the segment I = [z, w] connect-

ing z and w does not hit K, then F is analytic on a neighborhood of I and

Re

(
F (z)− F (w)

z − w

)
=

∫ 1

0

Re(F ′(z + t(w − z)))dt.(9.4)

The integral on the right is positive since Re(F ′) > 0 off K. Moreover, the integral

is bounded uniformly away from zero depending only on the length of the segment

I. (This uses that Re(F ′) is positive off the Cantor set K, and that it has a positive

limit at ∞.) The other possibility is that S crosses the imaginary axis at iy ∈ K.

Set Ix = I \ {|Re(z)| < x}. Then we have

Re

(
F (z)− F (w)

z − w

)
≥ lim

x↘0

∫
Ix

Re(F ′(z + t(w − z)))dt

+ lim inf
x↘0

[F (x+ iMx+ iy))− F (−x− iMx+ iy)]

where M is the slope of S (note that M 6= ∞ since we assumed Re(z) 6= Re(w)).

The integral over Ix is bounded away from zero for x small, since one of its two

components has length greater than |I|/4 for small x, and by (9.4) this gives a positive

lower bound. By (9.3) the limit infimum in the second term is a non-negative real

number. This gives the desired lower bound, and therefore G is a homeomorphism,

completing the proof that E ×K is CH-non-removable. �
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Dimitrios Ntalampekos observed that the arguments of Ahlfors and Beurling in [1]

can be used to prove that the complement S-non-removable compact set K ⊂ iR
can be conformally mapped to the complement of a compact set H whose connected

components are either points or non-trivial horizontal slits, and that some non-trivial

slits must occur. Therefore, the proof given above for a single, explicit K could be

used to prove Wu’s theorem in general, although this would require invoking the

aforementioned results of Ahlfors and Beurling.

10. How hard is conformal welding?

We recall some definitions from the introduction. If Γ is a closed Jordan curve in

the plane, the Riemann mapping theorem gives conformal maps f and g from the

inside and outside of the unit circle to the inside and outside of Γ. By Carathéodory’s

theorem3 these maps extend to be homeomorphisms of T to Γ. Thus h = g−1 ◦ f :

T → T is a homeomorphism, and circle homeomorphisms that arise in this way are

called conformal weldings.

Not every homeomorphism is a welding. In [49], Oikawa proved that if h : T→ T
is given by h(exp(iθ)) = exp(i(2π)1−α · θα) for some 0 < α < 1 and 0 ≤ θ < 2π, then

h is not a conformal welding of the circle.

A more geometric example can be described as follows. Consider the graph of

sin(1/x) for x 6= 0, together with the limiting segment [−i, i]. See Figure 10. This is

closed set X dividing the plane into two simply connected domains and one can show

that the conformal maps form either side of T to either side of X still define a circle

homeomorphism h. Moreover, we can choose f and g so that 1 ∈ T corresponds to

the prime end [−i, i] under both maps, and hence h fixes this point.

However, h cannot correspond to any Jordan curve Γ; if it did, one could confor-

mally map the two sides of X to the two sides of Γ so that the maps agree along

the graph of sin(1/x). Since this curve is removable for conformal homeomorphisms

the map extends to be conformal from the complement [−i, i] to the complement

of a point. Since the complement of the segment is conformally equivalent to the

3This result was actually first proven by Carathéodory’s student Marie Torhorst in her 1918
doctoral dissertation using Carathéodory’s theory of prime ends, so perhaps it is more appropriate
to call it the Carathéodory-Torhorst theorem; see [54] for some of the history.
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Figure 10. An example of a non-welding homeomorphism. If f1, g1
map the two sides of T to the two sides of a sin(1/x) curve γ, then
h = g−11 ◦ f1 is a homeomorphism, but is not a conformal welding, as
explained in the text.

unit disk, we would get conformal map between the disk and the plane, which would

violate Liouville’s theorem. Thus this homeomorphism is not a conformal welding.

It is a long standing, and apparently very difficult, problem to characterize confor-

mal weldings among circle homeomorphisms. We explained in Section 8 that circle

homeomorphisms are a Gδ set in C(T,T), and hence a Polish space.

Question 1. Are conformal weldings Borel in the space of circle homeomorphisms?

Are non-weldings co-analytic complete?

It is not hard to prove that weldings form analytic subset of circle homeomorphisms,

so non-weldings are co-analytic. The difficult part seems to be to construct a Borel

map from a Polish space into circle homeomorphisms, so that the preimage of the

non-weldings consists of known co-analytic complete set. For example, is there a

Borel map from compact sets of T to circle homeomorphisms so that the preimage of

the non-weldings are the countable compact sets? We saw above that it is possible

to construct a circle homeomorphisms that has an “obstruction” at just one point.

Also, it is known (see Theorem 2 of [9]) that any circle homeomorphism h can be

written as h = f−1 ◦ g where f and g are conformal maps of D and Dc
onto disjoint

simply connected domains, with equality holding everywhere except on a set E ⊂ T
so that E and h(E) both have logarithmic capacity zero. Can this be improved to a

countable exceptional set? If so, can this be used to give a map from non-weldings

to countable subsets of T? Such a map is going in the wrong direction to prove
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that non-weldings are co-analytic complete, but it would still be very interesting to

understand if such a map exists and what its properties are.

The best known sufficient condition for being a conformal welding (due to Pfluger

[51]) is quasisymmetry (QS for brevity): h : T→ T is M -quasisymmetric if

1

M
≤ |h(I)|
|h(J)|

≤M,

whenever I, J are adjacent arcs on T of the same length, and |I| denotes the length

of an arc. A map is quasisymmetric if it is M -quasisymmetric for some finite M . For

a fixed M , M -quasisymmetry is clearly a closed condition (with respect to uniform

convergence), so taking M → ∞ along the integers shows quasisymmetric homeo-

morphisms are a Fσ set inside Homeo(T,T). Quasisymmetric weldings correspond

precisely to closed curves that are quasicircles, i.e., images of the unit circle under

quasiconformal maps of the plane. There are numerous characterizations of this class

of curves, including the following: any two points z, w ∈ γ are connected by a subarc

with diameter bounded by O(|z−w|).4 It is easy to see M -quasisymmetric maps are

nowhere dense, so the set of quasisymmetric homeomorphisms is meager the space of

all circle homeomorphisms. A set is meager if it is a countable union of nowhere dense

sets. Such sets are also called “first category”, although this usage is becoming less

common. A set is called residual if it is the complement of a meager set. Trivially,

subsets of meager sets are meager, and supersets of residual sets are residual.

A more recent (and somewhat less well known) sufficient condition to be a con-

formal welding is for h to be log-singular, i.e., that there exist a set E ⊂ T of

logarithmic capacity zero so that T\f(E) also has logarithmic capacity zero. See [9].

Quasisymmetric and log-singular circle homeomorphisms are easily seen to be disjoint

sets (e.g., QS homeomorphisms preserve sets of zero logarithmic capacity). Recently,

Alex Rodriguez proved that any circle homeomorphism is the composition of two

log-singular homeomorphisms, and hence any circle homeomorphism is the compo-

sition of two conformal weldings [55]. However, his proof decomposes even “nice”

homeomorphisms as the composition of two highly singular maps. Is this necessary?

4According to page 84 of Lehto’s biography [41] of Alhfors, this was first proved in Martti Tienari’s
1962 dissertation, and independently by Ahlfors. Lehto quotes Ahlfors as saying “I have to confess
that when I first proved the result, I thought it was too good to be true”
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Can a homeomorphism with some given modulus of continuity be decomposed into

welding with similar estimates?

Question 2. Is any bi-Hölder circle homeomorphism the composition of bi-Hölder

welding maps?

Some other classes of circle homeomorphisms that are known to be conformal weld-

ings were described by David [19] and Lehto [40] (actually they describe conditions

on a measurable function µ on the unit disk so that the Beltrami equation fz = µfz

has a homeomorphic solution, and the boundary values of these solutions are the

circle homeomorphisms I am referring to). See also Chapter 20 of [4].

Question 3. Is the collection of David homeomorphisms a Borel set within the space

of circle homeomorphisms? The collection of Lehto homeomorphisms?

If γ is a closed Jordan curve with complementary components Ω1,Ω2, we say x ∈ γ
is rectifiably accessible from Ωk, for k = 1, 2, if it is the endpoint of a rectifiable

curve in Ωk. By a result of Gehring and Hayman (see [26] or Exercise III.16 of

[24]) this occurs iff a hyperbolic geodesic ray ending at x has finite Euclidean length.

A result of Charles Pugh and Conan Wu [52] says there is a residual set of closed

curves γ so that no point on γ is rectifiably accessible from both sides at once. In

their terminology, γ is not pierced by any rectifiable arc. See [12] for an explicit

construction of an extreme example of such a curve γ (any rectifiable curve crossing

γ intersects γ in positive length). By a result of Beurling, the set of points that are

not rectifiably accessible from Ωk, k = 1, 2 is the image of a zero logarithmic capacity

set on T under any conformal map D → Ωk (see [8], Exercise III.23 of [24], or [5]).

If γ is not pierced by any rectifiable curve, let E be the set of boundary points that

are rectifiably accessible from Ω1. Then no point of E can be rectifiably accessible

from Ω2, and by Beurling’s theorem, the image of E has zero logarithmic capacity

under the Riemann map from Ω2 to the disk, and γ \ E has zero capacity under the

Riemann map for Ω1. Therefore every rectifiably non-pierceable curve of Pugh and

Wu has a conformal welding that is log-singular. Theorem 3 of [9] states that h is

log-singular if and only if the corresponding curve is flexible; this means that the

set of curves corresponding to h is dense in the space of all closed curves with the

Hausdorff metric. See [9] for the precise definition. Thus the set of curves with a
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given log-singular welding is dense in the space of all closed Jordan curves, and hence

is CH-non-removable in a strong way. Therefore we have the following result.

Theorem 10.1. The collection of CH-non-removable closed curves is residual in the

space of all closed Jordan curves.

Very recently, Rodriguez [56] has proven that every log-singular circle homeomor-

phism is the welding of a collection of curves that includes curves of every Hausdorff

dimension on [1, 2], and even a curve of positive area. If a curve has positive area,

then by scaling a non-zero dilatation supported on the curve, we can use the measur-

able Riemann mapping theorem to produce a 1-parameter family of non-removable

curves, none of which is a Möbius image of the others. In particular, this gives un-

countably many curves with the same welding, so that no two of them are Möbius

images of each other. Given the result above for curves, it is natural to ask the

analogous question for circle homeomorphisms.

Question 4. Is the set of log-singular homeomorphisms residual in the space of all

circle homeomorphisms?

Question 5. What is the Borel complexity of the log-singular homeomorphisms?

It is not hard to show that both sets are analytic: h is log-singular if for every n ∈ N
there is a compact set such that both E and h(Ec) have logarithmic capacity less than

1/n (Lemma 11 of [9]). Thus the log-singular maps are a countable intersection of

projections of the Borel sets {(h,E) : cap(E), cap(h(Ec)) < 1/n} in Homeo(T,T)×2T.

Can analytic be improved to Borel?

Recall that we say Γ′ is a CH-image of Γ if Γ′ = f(Γ) where f is a homeomorphism

of the sphere that is conformal off Γ. We will say this is a strict CH-image if f is

not a Möbius transformation, and say it is a very strict CH-image if f(Γ) is not a

Möbius image of Γ. It is tempting to say that a strict image is also very strict, but

this might not be true. Maxime Fortier Bourque pointed out that the image of Γ

under a non-Möbius homeomorphism of the sphere might coincidentally agree with

its image under some Möbius map. Moreover, using log-singular weldings, Malik

Younsi [65] constructed a curve with a strict CH-image that agrees with itself. In

Younsi’s example, there are also very strict CH-images that are not Möbius images,

so it is still possible that a very strict image exists whenever a strict image does.
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Question 6. Is the map from (equivalence classes of) curves to (equivalence classes

of) conformal weldings 1-to-1 exactly on the CH-removable curves?

I expect this is true. The following is a stronger version.

Question 7. Does every CH-non-removable curve have a CH-image of positive area?

More generally, does this hold for all CH-non-removable sets? It does for all

examples known to the author. Various other questions about weldings and CH-

removable curves remain open.

Question 8. Is the map from equivalence classes of curves to equivalence classes of

weldings always either 1-to-1 or uncountable-to-1?

Question 9. Are CH-images of a curve a connected set in the Hausdorff metric?

Question 10. Is there a 1-parameter family of zero-area, non-CH-removable curves

that is continuous in the Hausdorff metric, so that no element is a Möbius image of

any other member of the family?

Question 11. The CH-images of a flexible curve are dense in the space of closed

Jordan curves, and hence are not a closed set. Is this set of curves Borel? (It must

be analytic.) Is it connected? Can it be totally disconnected? (Not if the answer to

Question 7 is yes.)

11. What are natural ranks for removable sets?

This section requires greater familiarity with the transfinite ordinals than did ear-

lier sections. Very briefly, each ordinal is a well ordered set (each element has a

successor, although some elements have no predecessor). The ordinals themselves are

well ordered and there is a first well ordering of an uncountable set, which is denoted

ω1. Every ordinal that becomes before ω1 is, by definition, the well ordering of some

countable set. The continuum hypothesis is the claim that ω1 = c, where c is the

cardinality of R, and is well known to be independent of ZFC.

If X is Polish and A ⊂ X is co-analytic, then there is always a co-analytic rank on

A. This is a function ρ on X that assigns each point of X to some ordinal ≤ ω1 and

such that
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(1) A = {x ∈ X : ρ(x) < ω1},
(2) {(x, y) ∈ A× A : ρ(x) < ρ(y)} is co-analytic in X ×X,

(3) {(x, y) ∈ A× A : ρ(x) ≤ ρ(y)} is co-analytic in X ×X.

Given such a function ρ, one can show that for every countable ordinal α, every set

Aα = {x ∈ A : ρ(x) ≤ α} is a Borel set, and every analytic subset of A is contained in

some Aα. Moreover, A is Borel if and only if every co-analytic rank of A is bounded

above by some countable ordinal.

The standard example (dating back to Cantor and motivating his invention of

transfinite ordinals) involves the derived sets of a compact set in R. Given a compact

K, the derived set K ′ is K with its isolated points removed; this is a compact subset

of K, with at most countably many points removed. If K was finite then K ′ = ∅, and

otherwise we can repeat the process to get the second derived set K ′′. Continuing, we

get a nested sequence of sets that either becomes empty after n <∞ steps (in which

case we set ρ(K) = n) or we get an infinite, strictly decreasing sequence of nested

compact sets whose intersection is a non-empty compact set Kω. If the derived set

of Kω is empty, then set ρ(K) = ω, and otherwise continue as before. We proceed

with this using transfinite induction. If K is countable, then since we remove at least

one point at each stage, we must reach the empty set at some countable ordinal,

and take this ordinal to be the rank of K. Since we remove only countably many

points at each stage, starting with an uncountable set never gives the empty set at

any countable ordinal. For such sets the rank is defined to be ω1. This defines a rank

for the co-analytic set of countable, compact subsets of [0, 1].

In [37] Kechris and Woodin describe a natural rank on the set of everywhere differ-

entiable functions in C([0, 1]). See also [38], [39], [53], for comparisons between their

rank and other ranks on the same set. A thesis of [37] is that “natural” co-analytic

sets should have natural ranks.

Question 12. What is a natural rank on the space of conformally removable sets?

For the special case of product sets E × [0, 1] with E countable, we can just take

the usual rank on countable compact sets described above using derived sets.

Question 13. Can the derived set rank on E × [0, 1] be extended to a co-analytic

rank on all removable sets in S = [0, 1]2?
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