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Abstract. We construct a non-polynomial entire function whose Julia set has
finite 1-dimensional spherical measure, and hence Hausdorff dimension 1. In 1975,
Baker proved the dimension of such a Julia set must be at least 1, but whether
this minimum could be attained has remained open until now. Our example also
has packing dimension 1, and is the first transcendental Julia set known to have
packing dimension strictly less than 2. It is also the first example with a multiply
connected wandering domain where the dynamics can be completely described.
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1. Statement of results

Suppose f is an entire function (holomorphic on the whole complex plane, C).

The Fatou set F(f) is the union of all open disks on which the iterates f, f 2, f 3, . . .

of f form a normal family and the Julia set J (f) is the complement of this set.

The function f is called transcendental if it is not a polynomial. We will define 1-

dimensional Hausdorff measure in Section 3; spherical Hausdorff measure refers to

using the spherical metric in its definition, rather than the usual Euclidean metric.

Theorem 1.1. There is a transcendental entire function f so that J (f) has finite

1-dimensional spherical Hausdorff measure.

In 1975 Baker [4] proved that if f is transcendental, then the Fatou set has no

unbounded, multiply connected components, and hence the Julia set cannot be totally

disconnected. Therefore it must contain a non-trivial continuum, and hence has

Hausdorff dimension at least 1. Thus the Julia set given by Theorem 1.1 must have

Hausdorff dimension equal to 1, the first example of transcendental Julia set with this

property. This answers a well known question, e.g., see page 307 of [39], Question

8.5 of [42] or Question 2 of [49].

In 1981 Misiurewicz [34] proved that the Julia set of f(z) = exp(z) is the whole

plane (see [33], [43] for alternate proofs of this). McMullen [31] gave transcendental

examples where the Julia set is not the whole plane, but still has dimension 2 (even

positive area) and Stallard [47], [48] has shown that the Hausdorff dimension of a

transcendental Julia set can attain every value in the interval (1, 2]. Together with

these results, Theorem 1.1 implies:

Corollary 1.2. The set of possible Hausdorff dimensions of a transcendental Julia

set is exactly the closed interval [1, 2].

The corresponding question for packing dimension is still open. In all previous

examples where the packing dimension is known, it is equal to 2, but we shall prove

the example in Theorem 1.1 has packing dimension 1. Although it is reasonable to

conjecture that all packing dimensions in the closed interval [1, 2] are possible for

a transcendental Julia set, only the two integer values {1, 2} are currently proven

to occur. See Section 3 for the definition of packing dimension and its relation to

Hausdorff dimension.
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As mentioned above, the Julia set of exp(z) is the whole plane, and so this function

is as chaotic as possible, although its definition and geometry are perhaps the simplest

possible for a transcendental entire function. In contrast, the example of Theorem

1.1 is among the dynamically “least chaotic” transcendental entire functions that can

exist, although it definition is significantly more complicated than exp(z). Thus in

transcendental dynamics it is easy to build highly chaotic functions (Julia sets with

large dimension), but hard to build less chaotic examples (Julia sets with dimension

close to or equal to 1). This is the reverse of the situation in other areas of conformal

dynamics, where building examples with large dimension is challenging. Thus we can

think of Theorem 1.1 as the transcendental analogue of the construction of polynomial

Julia sets of dimension two by Shishikura [44], or to the construction of positive

area Julia sets by Buff and Chéritat [22] (also see [3]). It is also analogous to the

construction of finitely generated Kleinian limit sets of dimension 2 that are not the

whole Riemann sphere. These are the geometrically infinite examples (they do not

have a finite sided fundamental polyhedron); such groups were first shown to exist

indirectly [13], [26], [30], then examples were constructed explicitly [27], [32], and

finally all such groups were proven to have limit sets of dimension two [20], [50].

Unlike the case of polynomial Julia sets, finitely generated Kleinian limit sets with

positive area do not exist [1], [23].

Stallard’s examples, mentioned above, lie in the Eremenko-Lyubich class; these are

transcendental entire functions with a bounded singular set, i.e., a bounded set of

critical values and finite asymptotic values. More recently, the author and Simon

Albrecht [19] showed that one can find examples with Hausdorff dimension close

to 1 even in the smaller Speiser class (transcendental entire functions with a finite

singular set). Stallard [46] proved that Julia sets of Eremenko-Lyubich functions have

Hausdorff dimension strictly larger than 1, and Stallard and Rippon [40] proved their

packing dimension is always equal to 2. Thus the example in Theorem 1.1 can’t lie

in the Eremenko-Lyubich class.

Baker’s theorem actually implies that any transcendental Julia set either contains

an unbounded continuum or a sequence of continua with diameters tending to in-

finity (the latter will be true in our example). Thus our example has infinite, but
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locally finite, 1-dimensional planar Hausdorff measure (finite 1-dimensional spherical

measure implies every bounded subset has finite planar measure)

We shall prove even more: J (f) is a rectifiable set in the sense of geometric

measure theory: except for a set of 1-dimensional measure zero, it can be covered by

a countable union of C1 curves (in our case, the exception set even has small Hausdorff

dimension). On the other hand, we will also prove that for our example, J (f) is not

a subset of a rectifiable curve on the Riemann sphere; indeed, J (f) ∩ D(x, r) does

not lie on a rectifiable curve for any x ∈ J (f) and r > 0. Whether this holds for

every transcendental Julia set is open.

We will prove that, for our example, each connected component of the Fatou set is

an infinitely connected bounded open set whose boundary consists of countably many

C1 curves that accumulate only on the single boundary component that separates

this Fatou component from ∞. Baker [6] had shown that infinitely connected Fatou

components could exist, but ours is the first example where the geometry of the

components and the dynamics of f have been completely described; previously it

had been thought that such examples might be too pathological to admit a concise

description, as is given in this paper. Markus Baumgartner [8] has used our methods

to describe the topology of multiply connected Fatou components in other examples,

including Baker’s original example.

Given an entire function f , the escaping set of f is defined as

I(f) = {z : fn(z) → ∞}.

As with polynomials, J (f) = ∂I(f) for any entire function. This is due to Eremenko

[24] in the transcendental case; the hard part is to show I(f) 6= ∅. The escaping set

plays a more interesting role in transcendental dynamics because it can be subdivided

according to rates of escape (for a polynomial, all escaping points escape at the same

rate). For example, the “fast escaping set”, A(f), is defined as follows. Fix a large

S0 and inductively define

Sn+1 = max
|z|=Sn

|f(z)|.

It easy to see this gives an upper bound for |fn(z)| if |z| ≤ S0. The fast escaping set

A(f) = {z : there is a k ≥ 0 so that |fn+k(z)| ≥ Sn for all n ≥ 0}.
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are the points that almost achieve the upper bound. The fast escaping set was

introduced by Bergweiler and Hinkkanen in [11], and has come to play a crucial

role in transcendental dynamics. By a theorem of Baker [5], multiply connected

components of the Fatou set lie in the escaping set, but a stronger result of Rippon

and Stallard [41] implies that the closure of each Fatou component is in A(f). Thus

in our example, A(f)∩J (f) contains Jordan curves and so has dimension 1. On the

other hand, we will prove that I(f)\A(f) is non-empty, but has Hausdorff dimension

zero. Moreover, we will show that dim(C \ A(f)) may be taken as small as we wish.

Thus for the function f given by the proof of Theorem 1.1, all points in the plane

iterate to infinity at the same rate, except for an exceptional set of small Hausdorff

dimension. In this sense, our example behaves like a polynomial whose Julia set is a

Cantor set of small dimension, i.e., it has “simple dynamics” (however, our example

also has unbounded orbits that are not escaping, which a polynomial can’t have).

We summarize the discussion above (and other results we will prove) as follows.

Theorem 1.3. There is a transcendental entire function f so that

(1) H1(J (f) ∩ D(x, r)) = O(r) for every disk D(x, r) in the plane, i.e., 1-

dimensional planar Hausdorff measure on J (f) is upper Ahlfors regular.

(2) Every Fatou component Ω is a bounded, infinitely connected domain whose

boundary consists of a countable number of C1 curves, and the accumula-

tion set of these curves is the outer component of ∂Ω (the unique boundary

component that separates Ω from ∞).

(3) The fast escaping set, A(f), is the union of the closures of all the Fatou

components. Thus, A(f) ∩ J (f) is the union of boundaries of the Fatou

components.

(4) Given any α > 0, f may be chosen so dim(C \ A(f)) < α.

(5) dim(I(f) \ A(f)) = 0.

(6) J (f) has packing dimension 1, but D(x, r)∩J (f) has infinite 1-dimensional

packing measure for every x ∈ J (f) and r > 0.

(7) Given any function ψ(t) so that limt→∞ ψ(t)t−n = ∞ for every n, f may be

chosen so that |f(z)| = o(ψ(|z|)) as |z| → ∞, i.e., we can choose f to grow

more slowly than any given super-polynomial function.
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By (1), the linear measure of J0 = J (f) ∩D(0, 1) is O(1), and the linear measure

of Jn = J (f) ∩ {z : 2n−1 ≤ |z| ≤ 2n} is at most O(2n) for n ≥ 1. Thus the spherical

linear measure of Jn is O(2−n) for n ≥ 0, so summing over n gives Theorem 1.1.

Linear measure is not lower regular on J (f) because J (f) is not uniformly perfect;

the Fatou set contains round annuli of arbitrarily large modulus that surround points

of the Julia set (this is true whenever there are multiply connected Fatou components,

see e.g., [12]).

The conclusion that dim(C\A(f)) < α can’t be improved to dimension zero because

the set of points with bounded orbits always has positive Hausdorff dimension (e.g.,

see the proof of Corollary 2.11 in [37], or [45] which contains essentially the same

argument). Examples of entire functions where points with bounded orbits have

small Hausdorff dimension were also given by Bergweiler [10].

The final conclusion implies our example has order of growth zero, i.e.,

ρ(f) ≡ lim sup
z→∞

log log |f(z)|
log |z| = 0.

Moreover, we can choose it to be as “close to” polynomial growth as we wish.

In this paper we will often use the “big-Oh” and “little-oh” notation. If An and

Bn are two quantities that depend on a parameter n, then An = O(Bn) means that

supnAn/Bn <∞ and An = o(Bn) means that limnAn/Bn = 0.

The idea for the construction originates in a series of papers [14], [15], [16], [17], [18],

which construct entire functions by a method I call quasiconformal folding, although

this method does not explicitly appear here. The chain of papers started with a

conversation with Alex Eremenko during his visit to Stony Brook in March 2011,

and was encouraged by further exchanges with both Eremenko and Lasse Rempe-

Gillen. I thank Lasse Rempe for a detailed reading of the first draft of this paper and

for his numerous helpful comments and suggestions. I also thank David Sixsmith

for his many helpful comments on a later draft, and for pointing out an error in

the proof, and to Jack Burkart for finding some mistakes. Many thanks to Walter

Bergweiler and Markus Baumgartner for pointing out several errors in an earlier

version and suggesting simplifications that significantly improved the paper. Extra

thanks to Markus for his many detailed comments and corrections to later versions

as well. An anonymous referee’s report on an earlier version of this paper provided

numerous corrections and questions that greatly improved the manuscript, and I am
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extremely grateful for the effort that went into that report. A second referee’s report

also provided valuable feedback and suggestions that further improved the paper.

2. Overview of the proof

This section gives an overview of the main definitions and steps of the proof.

We will define a family of entire functions depending on a positive integer parameter

N , real parameters λ,R > 1 and an infinite subset S ⊂ N = {1, 2, . . . }. Each f is

defined as an infinite product of the form

f(z) = F0(z) ·
∞∏

k=1

Fk(z),

where F0 is the Nth iterate of the quadratic polynomial pλ(z) = λ(2z2 − 1), Fk(z) is

the constant function 1 if k 6∈ S, and

Fk(z) =

(
1− 1

2

(
z

Rk

)nk
)

if k ∈ S. The sequences {nk}, {Rk} increase rapidly to ∞ and will be defined

inductively in terms of the parameters {N, λ,R, S}. After giving the details of these

definitions, we will quickly verify that the infinite product converges uniformly on

compact subsets of the plane and prove that the resulting function has order of

growth zero. The set S is only used to verify part (7) of Theorem 1.3; the reader

may set S = N in order to simplify the proof and still get a function f with ρ(f) = 0

and satisfying conditions (1)-(6) in Theorem 1.3.

The zeros of Fk, k ∈ S are evenly spaced on a circle of radius

rk = Rk(1 +
log 2

nk

+O(n−2
k )).

This symmetric placement of the zeros is what allows us to estimate f precisely and

leads to the differentiability of the boundaries of the Fatou components.

To understand the dynamics of f , define, for k ≥ 1, the annuli

Ak = {z : 1
4
Rk ≤ |z| ≤ 4Rk},

Bk = {z : 4Rk < |z| < 1

4
Rk+1}.

Note that the Ak have bounded moduli, but the moduli of the Bk get larger and

larger because Rk+1/Rk ր ∞ rapidly (e.g. we will prove Rk+1 ≥ 2R2
k). The main
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step of the proof is to prove the inclusions

f(Bk) ⊂ Bk+1, and Ak+1 ⊂ f(Ak) ⊂ Dk+2, k ≥ 1,(2.1)

where Dk = {z : |z| < Rk/4} is the bounded complementary component of Ak. The

first inclusion implies the annuli {Bk} iterate uniformly to ∞ and hence they are in

the Fatou set. Thus the Julia set is contained in D1

⋃∪k≥1Ak.

Inside D1, f ≈ F0, since all the other factors are close to 1 here. If λ is large, then

the polynomial pλ(z) = λ(2z2 − 1) has a Julia set that is a Cantor set with small

dimension. The same is true for F0, since this function is just an iterate of pλ. Since

f approximates F0 in D1, f restricted D1 will also have an invariant set E of small

dimension and points not in E will eventually iterate out of D1. Let Ẽ be the subset

of J (f) that eventually iterates into E. Then X = J (f) \ Ẽ, are the points whose

orbits are in ∪kAk infinitely often.

Points that map under f into J (f)∩ (D \E) eventually re-enter A1, and thus they

actually land in some preimage of A1. For non-positive indices we set

A−k = f−k−1(A1) ∩D1.

With this notation, the orbit of a point in X stays inside A = ∪∞
k=−∞Ak forever and

we can associate to each such orbit an itinerary as follows. For each z ∈ X we define a

sequence of integers k(z, n), n ≥ 0 by the condition fn(z) ∈ Ak(z,n). These sequences

must always satisfy

k(z, n+ 1) ≤ k(z, n) + 1 if k(z, n) ≥ 1(2.2)

because f(Ak) ∩ Aj = ∅ for j > k + 1 (by the third inclusion in 2.1), and

k(z, n+ 1) = k(z, n) + 1 if k(z, n) ≤ 0(2.3)

because f(Ak) = Ak+1 by definition for k ≤ 0.

Any integer sequence is either eventually strictly increasing or it is not, so every

sequence satisfying (2.2) and (2.3) must satisfy exactly one of the following two

conditions:

(1) k(z, n+ 1) ≤ k(z, n) infinitely often,

(2) k(z, n+ 1) = k(z, n) + 1 for all large enough n.

These two conditions define subsets Y, Z ⊂ X respectively. The set Z is the fast

escaping part of the Julia set and it consists exactly of the closed C1 curves that
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are the boundary components of Fatou components and so it has dimension 1. See

Figure 1. The set Y contains points that do not escape as fast as possible; orbits in Y

can either escape, remain bounded or oscillate (the “bungee set” in the terminology

of [35]). We will show that the Hausdorff dimension of Y can be taken as close to

zero as we wish by an appropriate choice of the parameters defining f , and that

Y ∩ I(f) = I(f) \ A(f) has Hausdorff dimension zero.

Figure 1. A model of a Fatou component. There is a C1 outer
boundary curve that separates the Fatou component from ∞ and this
curve is the accumulation set of other boundary curves; these are
grouped into levels which lie on curves roughly parallel to the outer
boundary. The figure is not to scale; the levels of boundary curves lie
in an annulus Ak of bounded modulus, but the component contains
an annulus Bk−1 of huge modulus. The single innermost boundary
component is sometimes replaced by a bounded number of curves.

3. Minkowski, Hausdorff and packing dimensions

In this section we recall the definition of Minkowski, packing and Hausdorff dimen-

sions, and some basic properties that we will need. For further details see [21].

For a bounded set K ⊂ R
n, let N(K, ǫ) denote the minimal number of sets of

diameter at most ǫ needed to cover K. We define the upper Minkowski dimension as

Mdim(K) = lim sup
ǫ→0

logN(K, ǫ)

log 1/ǫ
,

and the lower Minkowski dimension

Mdim(K) = lim inf
ǫ→0

logN(K, ǫ)

log 1/ǫ
.
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If the two values agree, the common value is simply called the Minkowski dimension

of K and denoted by Mdim(K). Note that the upper Minkowski dimension of a set

and its closure agree. If a connected set K has Mdim(K) = 1, then it is easy to check

that Mdim(K) exists and equals 1.

There is an alternate formulation of the upper Minkowski dimension in terms of

dyadic cubes and Whitney covers that is convenient to use in many cases, including

in the current paper. For n ∈ Z, we let Dn denote the collection of nth generation

closed dyadic intervals

Q = [j2−n, (j + 1)2−n],

and let D be the union of Dn over all integers n. A dyadic cube in R
d is any product

of dyadic intervals that all have the same length. The side length of such a square

is denoted ℓ(Q) = 2−n and its diameter is denoted |Q| =
√
dℓ(Q). Each dyadic cube

is contained in a unique dyadic cube Q↑ with |Q↑| = 2|Q|; we call Q↑ the parent of

Q. The nested property of dyadic cubes says that any two dyadic cubes either have

disjoint interiors or one is contained inside the other.

Suppose Ω ⊂ R
d is open. Every point of Ω is contained in a dyadic cube such

that Q ⊆ Ω and |Q| ≤ dist(Q, ∂Ω). Thus every point is contained in a maximal

such cube. By maximality, we have dist(Q↑, ∂Ω) ≤ |Q↑| and therefore dist(Q, ∂Ω) ≤
|Q↑|+ |Q| = 3|Q|. Thus the collection of such cubes forms a Whitney decomposition,

i.e., a collection of cubes {Qj} in Ω that are disjoint except along their boundaries,

whose union covers Ω and that satisfy

1

λ
dist(Qj, ∂Ω) ≤ |Qj| ≤ λdist(Qj, ∂Ω),

for some finite λ.

For any compact set K ⊂ R
d we can define an exponent of convergence

α = α(K) = inf

{
α :

∑

Q∈W

|Q|α <∞
}
,(3.1)

where the sum is taken over all cubes in someWhitney decompositionW of Ω = R
d\K

that are within distance 1 of K (we have to drop the “far away” cubes or the series

might not converge). It is easy to check that α is independent of the choice of Whitney

decomposition. The following is Lemma 2.6.1 of [21].
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Lemma 3.1. For any compact set K in R
d, we have α(K) ≤ Mdim(K). If K also

has zero Lebesgue measure then α(K) = Mdim(K).

Given any set K in a metric space X, we define the α-dimensional Hausdorff

content as

Hα
∞(K) = inf

{∑

i

diam(Ui)
α : K ⊂

⋃

i

Ui

}
,

where {Ui} is a countable cover of K by any sets. The Hausdorff dimension of K is

defined to be

dim(K) = inf{α : Hα
∞(K) = 0}.

More generally we define

Hα
ǫ (K) = inf

{∑

i

diam(Ui)
α : K ⊂

⋃

i

Ui, diam(Ui) < ǫ

}
,

where each Ui is now required to have diameter less than ǫ. The α-dimensional

Hausdorff measure of K is defined as

Hα(K) = lim
ǫ→0

Hα
ǫ (K).

If the metric space X is the Euclidean plane, then we refer to Hα as α-dimensional

planar measure; if X is the Riemann sphere, then we call it α-dimensional spherical

measure. The statement of Theorem 1.1 uses the latter measure. More precisely, the

theorem is equivalent to saying there is a C <∞, so that for any ǫ > 0, J (f) can be

covered by disks {D(xk, rk)} of radius at most ǫ so that

∑

k

rk
1 + |xk|2

≤ C.

If we admit only open sets in the covers of K, then the value of Hα
ǫ (K) does not

change. This is also true if we use only closed sets or use only convex sets. Using

only balls might increase Hα
ǫ by at most a factor of 2α, since any set K is contained

in a ball of at most twice the diameter. Still, the values for which Hα(K) = 0 are

the same whether we allow covers by arbitrary sets or only covers by balls.

A standard result (e.g. Proposition 1.2.6 of [21]) says that

Hα(E) = 0 ⇔ Hα
∞(E) = 0
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and therefore

dimE = inf{α : Hα(E) = 0} = inf{α : Hα(E) <∞}
= sup{α : Hα(E) > 0} = sup{α : Hα(E) = ∞} .

The following relationship to Minkowski dimension is clear

dim(K) ≤ Mdim(K) ≤ Mdim(K).(3.2)

For any set E in a metric space, define the α-dimensional packing pre-measure by

P̃α(E) = lim
ǫ↓0

(
sup

∞∑

j=1

(2rj)
α

)
,

where the supremum is over all collections of disjoint open balls {B(xj, rj)}∞j=1 with

centers in E and radii rj < ǫ. This pre-measure is finitely sub-additive, but not

countably sub-additive. Define the packing measure in dimension α:

Pα(E) = inf

{
∞∑

i=1

P̃α(Ei) : E ⊂
∞⋃

i=1

Ei

}
.(3.3)

The pre-measure of a set and its closure are the same, so we may assume the sets {Ei}
in the definition are closed. It is easy to check that Pα is a metric outer measure,

hence all Borel sets are Pα-measurable. Finally, define the packing dimension of E:

Pdim(E) = inf {α : Pα(E) = 0} .(3.4)

However, it is usually more convenient to compute packing dimension using the fol-

lowing result (Proposition 2.7.1 of [21]):

Lemma 3.2. The packing dimension of any set A in a metric space may be expressed

in terms of upper Minkowski dimensions:

Pdim(A) = inf

{
sup
j≥1

Mdim(Aj) : A ⊂
∞⋃

j=1

Aj

}
,(3.5)

where the infimum is over all countable covers of A. Since the upper Minkowski

dimension of a set and its closure are the same, we can assume all the sets {Aj}
above are closed.

From this result it is immediate that

dim(E) ≤ Pdim(E) ≤ Mdim(E).(3.6)
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We will use Lemma 3.1 in Section 20 to prove that bounded pieces of the the Julia

set in Theorem 1.1 have Minkowski dimension 1, and hence the whole Julia set has

packing dimension 1 by Lemma 3.2.

4. A Cantor repeller

In this section we give an example of a polynomial whose Julia set has small

Hausdorff dimension. This will be used later to give the first term, F0, of the infinite

product defining our entire function.

Lemma 4.1. Let pλ(z) = λ(2z2 − 1) where λ ≥ 1. The Julia set of pλ is a Cantor

subset of [−1, 1] whose upper Minkowski dimension tends to zero as λր ∞.

Proof. The iterates of T2(z) = 2z2 − 1 are fairly easy to understand. The map

z 7→ 1
2
(z + 1

z
) maps D∗ = {z : |z| > 1} to U = C \ [−1, 1] and conjugates the action

of z2 on D
∗ to the action of T2 on U . Thus the Julia set for T2 is the segment [−1, 1]

and points off this segment are iterated towards ∞. Note that 0 is mapped to −1.

If we replace T2 by pλ = λ · T2 with λ > 1, then some interval around 0 is mapped

outside [−1, 1] and then iterates to ∞. Thus the Julia set of the new map is a Cantor

set of Hausdorff dimension < 1. The Julia set is contained in two intervals I,−I
whose endpoints maps to ±1; a little arithmetic shows that

I = [

√
1

2
− 1

2λ
,

√
1

2
+

1

2λ
].

Then |p′λ(z)| = 4λ|z| is minimized over I at the left endpoint, so

|p′λ| ≥ 4λ

√
1

2
− 1

2λ
≥ 2λ,(4.1)

on I if λ ≥ 2. Thus the Julia set of pλ is covered by 2n n-generation pre-images

of these intervals and each has size at most (2λ)−n, and so the upper Minkowski

dimension of the Julia set is at most log 2
log 2+log λ

. This tends to zero as λ increases. �

The level lines of the iterates {|pnλ| = 2} form nested loops around the Julia set and

their length decreases exponentially with n. See Figure 2. A more precise statement

that we shall need later is (the proof is easy and left to the reader):
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Lemma 4.2. Suppose pλ is as above. For r ≥ 2 and n ∈ N = {1, 2, . . . }, let γn be a

connected component of {|pnλ| = r}. There is a constant Cλ, so that diam(pλ(γn)) ≥
Cλdiam(γn) and Cλ may be taken as large as we wish by taking λ large enough.

Figure 2. The level lines of iterates of p = 2 ·T2. This shows inverse
images of three circles of radius 1

2
r, r, 2r under p, p2, p3. The value

r = 14 was chosen so that p−2(|z| = r) would contain the critical point
at 0.

If we holomorphically perturb pλ by multiplying by an entire function that is close

to 1 on a disk D = D(0, 1
2
R), then the new function f is a polynomial-like map of

degree 2 and pre-images of the unit circle will be close to the pre-images under pλ.

Thus there is a Cantor set E of small dimension that is invariant under f and so

that any point outside E eventually iterates outside D. The inverse images of ∂D

are finite unions of closed curves whose total length decays exponentially.

Next we record a calculation that we will need in the next section.

Lemma 4.3. Let pnλ denote the nth iterate of pλ. For n ≥ 1, |(pnλ)′′(0)| ≥ (4λ)n.

Proof. For n = 1 an easy calculation shows (pnλ)
′′(z) ≡ 4λ. The other cases we

prove inductively. Let gn = pnλ, the nth iterate of pλ. The g1(z) = λ(2z2 − 1) and
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g′1(z) = 4λz. By two applications of the chain rule,

g′′n(0) = (g(gn−1))
′′(0)

= (g′(gn−1)g
′
n−1)

′(0)

= g′′(gn−1(0))(g
′
n−1(0))

2 + g′(gn−1(0))g
′′
n−1(0)

By the chain rule g′n(0) = 0 for n ≥ 1, so the left term in the last line above is

zero. Moreover, is easy to check that |gn(0)| ≥ 1 for n ≥ 1, so using the induction

hypothesis, we get

|g′′n(0)| = |g′(gn−1(0))g
′′
n−1(0)| = 4λ|gn−1(0))|(4λ)n−1 ≥ (4λ)n. �

5. The definition of f

Rather than produce a single entire function, we will define a collection of entire

functions defined by related infinite products. Each element of the family will depend

on the choice of a natural number N , two positive real numbers λ and R and an

infinite subset S of the natural numbers N = {1, 2, . . . }; we will assume {1} ∈ S.

We also assume throughout that min(λ,R) ≥ 4, although several additional lower

bounds will be imposed later. For a first reading, it might be simplest to take S = N;

this choice suffices to prove parts (1)-(6) of Theorem 1.3 and gives a function with

order of growth zero. Sparser sets are only needed to verify part (7) of that theorem.

Let F0(z) = pNλ (z), which we defined earlier as theNth iterate of pλ(z) = λ(2z2−1).

Then F0 has degreem = 2N with leading coefficient (2λ)m−1. If R > 0 is large enough,

then |z| ≥ R implies

1

2
≤
∣∣∣∣

F0(z)

(2λ)m−1zm

∣∣∣∣ ≤
3

2
, if |z| ≥ R.(5.1)

Assume R is large enough that this holds.

Suppose S ⊂ N = {1, 2, 3 . . . } is an infinite set and that 1 ∈ S. For k ∈ N, let

Sk = S ∩ {1, . . . , k} and let #(Sk) denote the number of elements in Sk. Note that

#(S1) = 1 since we assumed 1 ∈ S and that #(Sk) ≤ k.

Next define

nk =

{
2N+#(Sk)−1 if k ∈ S,

0 if k 6∈ S.

Note that n1 = 2N , and for k ∈ S we have nk ≥ 2N ≥ 2. In the special case S = N,

we have nk = 2N+k−1 for all k ≥ 1.
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We define an increasing sequence of real numbers {Rk}∞k=1 and two sequences of

polynomials {fk}∞k=0 and {Fk}∞k=1 inductively as follows. Set f0 = F0, where F0 is as

defined above. Set

R1 = 2R(5.2)

where R is as above. Assuming k ≥ 1 and Rk, fk−1 and Fk−1 have already been

defined, set Fk(z) = 1 if k 6∈ S and for k ∈ S set

Fk(z) = 1− 1

2
(
z

Rk

)nk .(5.3)

For all k ≥ 1 we set

fk(z) = fk−1(z) · Fk(z) =
k∏

j=0

Fj(z),(5.4)

Rk+1 =M(fk, 2Rk) = max{|fk(z)| : |z| = 2Rk}.(5.5)

Since Fk is only non-trivial when k ∈ S, the product defining fk could be taken just

over the indices in the set S, i.e.,

fk(z) = F0(z) ·
∏

j∈Sk

Fj(z),(5.6)

and sometimes it will be convenient to view it this way.

Lemma 5.1. Rk ր ∞.

Proof. By the product rule,

f ′′
k (0) =

∑

j

F ′′
j (0)

∏

k 6=j

Fk(0) +
∑

j

∑

n 6=j

F ′
j(0)F

′
n(0)

∏

k 6=j,n

Fk(0).

Since for k ≥ 1 we have Fk(0) = 1 and F ′
k(0) = F ′′

k (0) = 0, it is then easy to deduce

that |f ′′
k (0)| = |F ′′

0 (0)| ≥ (4λ)N > 4λ by Lemma 4.3. By the Cauchy estimates

4λ ≤ |f ′′
k (0)| ≤

2M(fk, r)

r2
,

for any r > 0. Taking r = 2Rk, and using λ ≥ 2 gives

Rk+1 ≥
1

2
(2Rk)

24λ ≥ 8R2
kλ ≥ 16R2

k.(5.7)

Since R1 ≥ R > 1, this implies {Rk} increases to ∞ at least exponentially. �



16 CHRISTOPHER J. BISHOP

A simple induction using (5.7) shows:

Rk+1 ≥ 42
k

R2k , k ≥ 1.(5.8)

This is the first of several lower bounds on the growth of {Rk} that we will give.

Lemma 5.2. The infinite product

f(z) =
∞∏

k=0

Fk(z) = F0(z) ·
∏

k∈S

Fk(z) = lim
k→∞

fk(z),(5.9)

converges uniformly on compact sets of C.

Proof. Fix s > 0 and choose j so that Rj > 2s. Then for |z| ≤ s and k ≥ j, either

Fk ≡ 1 (if k 6∈ S) or

Fk(z) = 1− 1

2
(
z

Rk

)nk = 1 +O(2−nk) = 1 +O(2−2k).

Hence the infinite product converges uniformly on {|z| ≤ s}. �

In particular

f(z) = lim
k→∞

fk(z) =
∞∏

k=0

Fk(z)(5.10)

defines an entire function. The rest of the paper is devoted to proving this function

satisfies the conclusions of Theorems 1.1 and 1.3.

6. Some product estimates

Here we record some simple consequences of the definitions in the previous section

that we will use later to approximate our infinite product by finite ones.

Let

mk = max(n1, . . . , nk) = 2N+#(Sk)−1.(6.1)

This is clearly increasing and mk = nk if k ∈ S More generally, mk = nj where j is

the last element of Sk. (When k ∈ S, mk and nk can be used interchangeable; we

will most often use nk, but not universally.) In the special case S = N, then mk = nk

for all k ≥ 1, which is one reason the proof in this case is simpler.

Note that

mk ≤ 2mk−1 and mk ≥ 2N(6.2)
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for all k. Furthermore,

deg(fk) =
k∑

j=0

deg(Fj) = 2N +
∑

j∈Sk

nj

= 2N

(
1 +

∑

j∈Sk

2#(Sj)−1

)
= 2N


1 +

#(Sk)−1∑

n=0

2n




= 2N(1 + (2#(Sk) − 1) = 2N+#(Sk)

= 2mk

and this equals 2 deg(Fk) if k ∈ S. Hence

deg(fk) = 2 deg(Fk) if k ∈ S.(6.3)

Also for future reference, we note that we have shown

2N +
∑

j∈Sk

nj = 2mk.(6.4)

If k ∈ S, this becomes

2N +
∑

j∈Sk−1

nj = 2nk−1 = nk.(6.5)

We will use the following consequences of (5.7) later in the paper

Lemma 6.1. Suppose {Rk} is as above and m ≥ 1. Then

k−1∏

j=1

(
1 +

Rj

Rk

)
= 1 +O

(
Rk−1

Rk

)
= 1 +O(R

−1/2
k )(6.6)

k−1∏

j=1

(
1 +

(
Rj

Rk

)m)
= 1 +O(R

−m/2
k ),(6.7)

∞∏

j=k+1

(
1 +

Rk

Rj

)
= 1 +O

(
Rk

Rk+1

)
= 1 +O(R−1

k )(6.8)

∞∏

j=k+1

Fj(z) = 1 +O(R−1
k ), |z| ≤ 4Rk.(6.9)
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Proof. We prove (6.7) since it contains (6.6) as a special case. Note that (5.7) implies

that that Rk−1 ≤
√
Rk/8 and Rj ≤ Rj+1/2, and hence that for j = 1, . . . , k,

k−1∏

j=1

(
1 +

(
Rj

Rk

)m)
= exp

(
log

k−1∏

j=1

(
1 +

(
Rj

Rk

)m))
= exp

(
k∑

j=1

log

(
1 +

(
Rj

Rk

)m))

≤ exp

(( √
Rk

2
√
2Rk

)m(
1 +

1

2
+

1

4
+ . . .

)m)
≤ exp

((
1√
2Rk

)m)

≤ 1 +R
m/2
k

where the last line uses ex ≤ 1 + 2x if 0 ≤ x ≤ 1.

The proof of (6.8) is very similar:

∞∏

j=k+1

(1 +
Rk

Rj

) = exp

(
∞∑

j=k+1

log

(
1 +

Rk

Rj

))
≤ exp

(
∞∑

j=k+1

Rk

Rj

)

≤ exp

(
1

Rk

(
1 +

1

2
+

1

4
+ . . .

))
≤ exp

(
2

Rk

)

≤ 1 +
4

Rk

Finally we consider (6.9). Assume |z| ≤ 4Rk. Then

∞∏

j=k+1

Fj(z) =
∞∏

j=k+1

(
1− 1

2

(
z

Rj

)nj
)

= exp

(
∞∑

j=k+1

log

(
1− 1

2

(
z

Rj

)nj
))

≤ exp

(
∞∑

j=k+1

1

2

(
4Rk

Rj

)nj

)
≤ exp

(
∞∑

j=k+1

2
Rk

Rj

)

≤ exp

(
2Rk

(
1

R2
k

+
1

R4
k

+ . . .

))
≤ exp

(
2

Rk

(
1 +

1

R2
k

+ . . .

))

≤ exp

(
4

Rk

)
≤ 1 +

8

Rk

. �

7. The order of growth

Lemma 7.1. The function f defined by (5.9) has order of growth 0.

Proof. We need an upper bound for the {Rk}. Assume |z| = 2Rk. From (5.1) we

deduce that if |z| ≥ R, then

|F0(z)| ≤
3

2
(2λ)2

N−1|z|2N .
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Equation (5.3) implies that if |z| = 2Rk, and j ∈ Sk, then since R ≥ 1,

|Fj(z)| ≤ 1 +
1

2

∣∣∣∣
z

Rj

∣∣∣∣
nj

≤ 1 +
1

2

∣∣∣∣
2Rk

Rj

∣∣∣∣
nj

≤ 1 +
1

2
|2Rk|nj ≤ (2Rk)

nj .

for any k ≥ 1. Thus for |z| = Rk,

|fk(z)| ≤ |F0(z)| ·
∏

j∈Sk

|Fj(z)|

≤ 3

2
(2λ)2

N−1|2Rk|2
N · (2Rk)

∑
j∈Sk

nj

≤ 3

2
(2λ)2

N−1 · (2Rk)
2N+

∑
j∈Sk

nj

≤ 3

2
(2λ)2

N−1 · (2Rk)
2mk

If we let C = 3
2
(2λ)2

N−1 and use the fact that mk = 2N+#(Sk)−1 ≤ 2N+k, then this

becomes Rk+1 ≤ C(2Rk)
2N+k+1

. Iterating this inequality gives

Rk+2 ≤ C · (2Rk+1)
2N+k+2

≤ C · (2C · (2Rk)
2N+k+1

)2
N+k+2

≤ C · (2C)2N+k+2 · (2Rk)
22N+2k+3

Hence if 2Rk ≤ |z| ≤ 2Rk+1, then

log log |f(z)|
log |z| ≤ log logRk+2

log 2Rk

≤
log log

(
C · (2C)2N+k+2 · (2Rk)

22N+2k+3
)

log 2Rk

Using log(x+ y) ≤ log x+ log y, for x, y ≥ 2, twice implies that this is bounded by

log logC

logRk

+
log log(2C)2

N+k+2

logRk

+
log log(2Rk)

22N+2k+3

logRk

(7.1)

The first term in (7.1) clearly tends to 0. Using (5.8) we see that the second term is

bounded by

≤ log
(
2N+k+2 log 2C

)

logR2k

≤ (N + k + 2) log 2 + log log 2C

2k logR
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and hence it also tends to zero. The third term in (7.1) is bounded by

≤ log
[
22N+2k+3 log 2Rk

]

logRk

≤ (2N + 2k + 3) log 2 + log log 2Rk

logRk

≤ (2N + 2k + 3) log 2

2k logR
+

log log 2Rk

logRk

.

These both tend to zero as k tends to ∞, hence the order of f is zero. �

Note that f grows like a polynomial of degree 2mk for |z| ≤ Rk+1, so choosing mk

to grow slowly, we can make f grow more slowly than any super-polynomial function.

We can make mk grow as slowly as we wish, by taking S ⊂ N sufficiently sparse. This

proves part (7) of Theorem 1.3.

8. The growth of {Rk}

As explained in Section 2, the Julia set of f roughly consists of points whose orbits

land near near one of the circles of radius Rk, k ∈ S, infinitely often. To make this a

small set, we want landing near a circle to be a rare event, which means that we want

the circles to be rather sparse. In other words, if Rk ր ∞ rapidly, then we expect

the Julia set to be small. We saw in equation (5.7) that Rk+1 ≥ 16R2
k. However, in

our estimates of Hausdorff dimension, we will need something stronger than this.

Lemma 8.1. For k ≥ 1,

Rk+1 ≥ 2mkR
2N−1+mk−1

k ≥ 2mkR
2N−1+mk/2
k ≥ 2NR2N

k .

Proof. The second and third inequalities are immediate from (6.2), so we only need

to prove the first inequality. For any k ∈ Sk it follows from (5.3) that

1

2

( |z|
Rk

)nk

− 1 ≤ |Fk(z)| ≤
1

2

( |z|
Rk

)nk

+ 1.(8.1)
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For k 6∈ S, Fk ≡ 1, so using the left side of (8.1), and (5.1), we get for any k

Rk+1 = max
|z|=2Rk

|fk(z)|

≥ max
|z|=2Rk

|F0(z)| ·
∏

j∈Sk

min
|z|=2Rk

|Fk(z)|

≥ 22
N 1

4
λ2

N−1R2N

k ·
∏

j∈Sk

(
1

2

(
2Rk

Rj

)nj

− 1

)

Next we will use λ ≥ 4, (5.7) and (6.4)

≥ 22
N

R2N

k ·
∏

j∈Sk

(
2nj−1R

nj/2
k − 1

)

≥ 22
N

R2N

k ·
∏

j∈Sk

2nj−2 ·
∏

j∈Sk−1

R
nj/2
k

≥ 22
N+

∑
j∈Sk

(nj−2) ·R
2N−1+(2N+

∑
j∈Sk−1

nj)/2

k

≥ 22mk−2#(Sk) ·R2N−1+mk−1

k

≥ 2mk ·R2N−1+mk/2
k

where, in the last line, we have used mk ≤ 2mk−1 and 2 ·#(Sk) ≤ 2#(Sk) ≤ mk. �

Corollary 8.2. If R ≥ 8, N ≥ 2, then 4Rk+14
2mk ≤ 1

4
Rk+2.

Proof. By Lemma 8.1 we have

1

4
Rk+2 ≥ 1

4
2mk+1R

(2N−1+mk)/2
k+1 ≥ 1

4
2mkRk+1R

mk/2
k+1

≥ 1

4
2mkRk+1(2Rk)

mk ≥ 1

4
2mkRk+12

2N · 8mk

≥ 4Rk+14
2mk . �

Corollary 8.3. If k ≥ 1, Rk+1 ≥ (2R)2
kN

.

Proof. The case k = 0 is (5.2). By Lemma 8.1,

Rk+1 ≥ (Rk)
2N ≥

(
(2R)2

(k−1)N
)2N

= (2R)2
kN

. �

Corollary 8.4. Suppose 1 ≤ s ≤ k. Then Rk ≥ 2(k−s)msRs.
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Proof. Use Lemma 8.1, mj ≥ 2, and the fact that {mj} is non-decreasing to deduce

that for j ≥ s we have

Rj+1 ≥ 2mjR
mj/2
j ≥ 2msRj.

The corollary is now obvious. �

Lemma 8.5. Let Mk = m1 . . .mk. For any α > 0 and any R > 1,
∞∑

k=1

2kMkR
−α
k <∞.(8.2)

For fixed α, the sum can be made as small as we wish by taking R sufficiently large.

Proof. Let ak = 2kMkR
−α
k be the kth term of the series. We will use the ratio test

for convergence. By Lemma 8.1 and the fact that mk ≤ 2mk−1, we have

ak
ak−1

=
2MkR

−α
k

Mk−1R
−α
k−1

≤ 2mkR
−(2N+mk−1)α/2
k−1

R−α
k−1

≤ 2mk(R
α/2
k−1)

−mk−1 ≤ 2mk(R
α/4)−mk

Since limn→∞ nx−n = 0 for any x > 1, we see that the ratio test is satisfied and the

sum converges for any R > 1.

Clearly
∑

k ak ≤ 2
∑

n nx
n where x = R−α/2. Using the differentiated geometric

series, the latter sum is bounded by 2x/(1− x)2, so tends to zero as R ր ∞. �

9. The geometry of T2

Let T2(z) = 2z2 − 1 be the degree two Chebyshev polynomial. The terms {Fk} of

our infinite product can be written in terms of T2(z
m). In this section we recall some

facts about the geometry of T2 that will be useful to us in understanding Fk.

Let z2 = −1/
√
2 be the left root of T2 and let w2 = 0 be its critical point. Let

Ω2 be the component of {z : |T2(z)| < 1} that contains z2. See Figure 3. Let

r2 = dist(z2,−1) = 1− 2−1/2 and r̃2 = dist(z2, w2) = 1/
√
2 and

D2 = D(z2, r2) = D(− 1√
2
, 1− 1√

2
), D̃2 = D(z2, r̃2) = D(− 1√

2
,
1√
2
).

Lemma 9.1. |T2| ≥ 1 on ∂D̃2 and ≤ 1 on ∂D2. Thus D2 ⊂ Ω2 ⊂ D̃2.

Proof. Each point of ∂D̃2 is the same distance from z2, and w2 is the closest point of

∂D̃2 to the other zero of T2. Hence the product of the distances from any point on
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z2

w2

D2

D2
~

Figure 3. The black dot is z2 and the white is w2. Ω2 is the left lobe
of the curve and is trapped between D2 and D̃2.

this circle to both zeros of T2 is minimized at w2 = 0. Thus |T2| (which is proportional

to this product) takes its minimal value over D̃2 at w2, giving the first inequality.

Because T ′
2(z) = 2z,

d

dr
|T2|(z2 + reiθ) ≤ |T ′

2(z2 + reiθ)| ≤ |T ′
2(z2 − r)| = d

dr
|T2|(z2 − r),

where we have used T ′
2(z) = 2z in the second step. Integrating gives

|T2(z2 + reiθ)| ≤ |T2(z2 − r)|.

Taking r = r2 gives the second inequality. �

Let

Hm(z) = −T2(r̃2zm + z2) = zm(2− zm).

Note that

H ′
m(z) = mzm−1(2− zm) + zm(−mzm−1) = 2mzm−1(1− zm),

and this shows all the non-zero critical points are on the unit circle. The complement

of the level line γm = {z : |Hm(z)| = 1} is an open set Ωm = C \ γm that has m + 2

connected components, as illustrated in Figure 4. This includes a central component

Ω0
m (the one containing 0), an unbounded component Ω∞

m and m other bounded

components that each have one critical point on their boundary. We call these the

“petals” of Ωm and denote their union by Ωp
m.

Hm is a m-to-1 branched covering map from Ω0
m to D with a single critical point

at the origin. Hm is conformal from the interior of each petal to D.
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Figure 4. Level sets of the form {z : |T2(zm)| = 1}, for m = 5, 10, 20.

Lemma 9.1 says that

∂Ω0
1 ⊂ {z : r2

r̃2
≤ |z| ≤ 1},

and so taking roots,

∂Ω0
m ⊂ {z : (r2

r̃2
)1/m ≤ |z| ≤ 1}.

Since r2/r̃2 =
√
2− 1 an easy computation says we can take

∂Ω0
m ⊂ {z : 1− a

m
≤ |z| ≤ 1},

where a = − log(
√
2− 1) ≈ .881374 ≤ 1. Thus

Lemma 9.2. {z : |z| < 1− 1
m
} ⊂ Ω0

m ⊂ D.

For the unbounded component we have

Lemma 9.3. {z : |z| > 1− 1
m
} ⊃ Ω∞

m ⊃ {z : |z| > 1 + 2
m
} if m ≥ 2.

Proof. Since Ω0 and Ω∞ are disjoint, the first inclusion is immediate from the first

inclusion of Lemma 9.2. For the second inclusion we note that {|T2| = 1} is contained

in a ball of radius 1 + r̃2 around z2 and hence γ1 is contained in a ball of radius

(1 + r̃2)/r̃2 = 1 + r̃−1
2 around 0. Thus

∂Ω∞
m ⊂ {z : |z| ≤ (1 +

√
2)1/m}.

A simple calculation shows shows

(1 +
√
2)1/m ≤ 1 +

√
2

m log(1 +
√
2)

≈ 1 +
1.60

m
≤ 1 +

2

m

and this proves the lemma. �
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10. f looks like Hmk
on Ak

As discussed in Section 2, we define families of disjoint annuli

Ak = {z : 1
4
Rk ≤ |z| ≤ 4Rk}, Bk = {z : 4Rk ≤ |z| ≤ 1

4
Rk+1},

and one of the key steps in the proof of Theorem 1.1 is to show that Ak+1 ⊂ f(Ak).

Both Ak and Ak+1 are round annuli of the same modulus, and Ak+1 contains the

circle of radius Rk+1 that, by the definition of Rk+1, hits the image of the circle of

radius 2Rk that is contained in Ak. Thus it would be enough to show that f looks

like a power function on Ak and that the image of Ak is a “roundish” annulus of large

moduli. This is not true, because if k ∈ S, then f has zeros in Ak near the circle of

radius Rk. However, this idea does work if we restrict to a sub-annulus of Ak. We

set

Vk = {z : 3
2
Rk ≤ |z| ≤ 5

2
Rk}, Uk = {z : 5

4
Rk ≤ |z| ≤ 3Rk+1}.

Note that Vk ⊂ Uk ⊂ Ak. In this section we give estimates for f on Ak and Uk that

we can use to prove the desired inclusions in a later section. We introduce the two

annuli Uk, Vk so we can use the Cauchy estimates to turn bounds for f on Uk into

estimates for f ′ on Vk.

Lemma 10.1. For k ∈ S,

Fk(z) =
1

2

(
Rk

z

)nk

Hnk

(
z

Rk

)
.

Proof. This is just arithmetic:

1

2

(
Rk

z

)nk

Hnk
(
z

Rk

) =
1

2

(
Rk

z

)nk
(
z

Rk

)nk
(
2− (

z

Rk

)nk

)

=

(
1− 1

2

(
z

Rk

)nk
)

= Fk(z). �

We can break the infinite product defining f into three parts: Fk, the finite product

over j < k and the infinite product over j > k. On Ak, the infinite product approxi-

mates 1 and the finite product approximates Ckz
nk for some constant Ck. Thus the

last lemma implies that f is very close to a multiple of Hnk
on Ak, and this leads to

very precise estimates of f . This is the reason we defined Fk as we did.
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2Rk

3Rk

Rk

4Rk

Figure 5. The nested annuli Ak (largest, light gray), Uk (medium)
and Vk (smallest, darkest). The latter two are neighborhoods of {|z| =
2Rk} but are separated from {|z| = Rk}.

Lemma 10.2. For k ∈ S and z ∈ Ak we have

f(z) = CkHnk
(
z

Rk

)
(
1 +O(R−1

k )
)

(10.1)

where

Ck = (−1)#Sk−1−12−#(Sk−1)(2λ)2
N−1Rnk

k ·
∏

j∈Sk−1

Rj
−nj .(10.2)

Proof. Write

f(z) = F0(z) ·
∏

j=Sk−1

Fj(z) · Fk(z) ·
∏

j∈S\Sk

Fj(z).

The second product is easy to handle using (6.9) and we get

∏

j∈S\Sk

Fj(z) = 1 +O(R−1
k ), z ∈ Ak.
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For the remaining terms, we use Lemma 10.1 (recall that k ∈ Sk by assumption) and

Equation (6.5)

F0(z) ·
∏

j∈Sk

Fj(z) = z−2NF0(z) ·


 ∏

j∈Sk−1

z−njFj(z)


 · znkFk(z)

= z−2NF0(z) ·


 ∏

j∈Sk−1

z−njFj(z)


 · 1

2
Hnk

(
z

Rk

) ·Rnk

k .

Since deg(F0) = 2N = n1 and deg(Fj) = nj, every term except the last one tends to a

constant as |z| → ∞ (and that constant is the coefficient of the highest degree term

of the polynomial). In particular, the first term is

z−n1F0(z) = (2λ)2
N−1

(
1 +O(R−1

k )
)
,

for z ∈ Ak. The terms of the product over j ∈ Sk−1 are

z−njFj(z) = z−nj ·
(
1− 1

2

(
z

Rj

)nj
)

= −1

2
R

−nj

j ·
(
1− 2

(
Rj

z

)nj
)
.

If z ∈ Ak, then this becomes

= −1

2
R

−nj

j ·
(
1 +O(

Rj

Rk

)nj

)).

Note that nk ≤ 2N+k ≤ 2NR2k/2 ≤ R
1/2
k , so (6.7) applies to give

∏

j∈Sk−1

(
1− 2

(
Rj

Rk

)nj
)

= 1 +O(R−1
k ).

This completes the proof. �

Corollary 10.3. For k 6∈ S and z ∈ Ak we have

f(z) = Ckz
2nk(1 +O(R−1

k ))

where Ck = Cj where j is the last element of Sk (note that j < k since k 6∈ Sk).

Proof. The proof mimics the previous proof, except that now the last non-trivial

term of the product over Sk occurs for some j ∈ S with j < k. By (6.4) we have

1 = z
−2N−

∑
i∈Sj

ni ·z2nj , so if we multiply the product F0 ·
∏

i∈Sk
Fi by these two terms,

the negative powers of z in the first term are paired with the non-trivial terms in the

product, leaving the z2nj term to appear alone. Making this change, and estimating

the products as before, proves the corollary. �
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Lemma 10.4. For k ≥ 1, |Ck+1| ≥ |Ck| ≥ 1.

Proof. Consider the first inequality. For k + 1 6∈ S, we have equality by definition

(see Corollary 10.3). For k + 1 ∈ S, using the definition and nk+1 ≥ 2mk gives

|Ck+1/Ck| ≥
1

2
R

nk+1

k+1 ·R−mk

k ≥ 1

2
Rmk

k+1 · (Rk+1/Rk)
mk ≥ 1.

The second inequality follows by induction and a computation that |C1| > 1. �

If j ∈ S is the nth element before k, then nj = nk/2
n and Rj ≤ R2−n

k . Thus

∏

s∈Sk−1

R
nj

j ≤
k∏

n=1

R
nk/4

n

k = R
nk

∑k
n=1 4

−n

k = R
nk/2
k .

Putting this into (10.2) gives

|Ck| ≥ (2λ)2
N−1R

mk/2
k ≥ 8Rk, k ∈ S.(10.3)

If k 6∈ S, then we get

|Ck| ≥ 8Rj,(10.4)

where j is the last element of Sk.

Lemma 10.5. For k ≥ 1, k ∈ S and 5
4
Rk ≤ |z| ≤ 4Rk we have

f(z) = Ck · z2nk ·
(
1 +O

(
4

5

)mk
)
·
(
1 +O(R−1

k )
)
.

Proof. Since k ∈ S, in (10.1) we can replace Hnk
with an approximation by a power

function as follows:

Hnk
(
z

Rk

) = −R−2nk

k z2nk

(
1− 2

(
Rk

z

)nk
)

= −R−2nk

k z2nk

(
1 +O

(
2
Rk

5
4
Rk

)nk
)

= −R−2nk

k z2nk

(
1 +O

((
4

5

)nk
))

. �

Corollary 10.3 and Lemma 10.5 both apply to the circle {|z| = 2Rk}, so for any

k ∈ N we have the following estimate that we shall use repeatedly:

1

2
≤ Rk+1

|Ck|(2Rk)2mk
≤ 2.(10.5)
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Lemma 10.6. For k ≥ 1, k ∈ S and 1
4
Rk ≤ |z| ≤ 4

5
Rk we have

f(z) = 2Ck ·R−nk

k · znk ·
(
1 +O

(
4

5

)mk
)
·
(
1 +O(R−1

k )
)
.

In particular, this holds for z ∈ U∗
k .

Proof. Since k ∈ S, then in (10.1) we use

Hnk
(
z

Rk

) = R−nk

k znk

(
2−

(
z

Rk

)nk
)

= 2R−nk

k znk

(
1 +O

((
4

5

)nk
))

�

Thus on Uk we have f(z) = Ckz
2mk(1+hk(z)), where hk is holomorphic on Uk and

|hk(z)| = O

((
4

5

)mk

+R−1
k

)
,(10.6)

on Uk; this bound is clearly summable over k. Moreover, we can assume the sum is

small, say less than 1/2 if m1 = 2N and R are large. We make this assumption from

this point on.

For future use we let

ǫk = C ·
((

3

4

)mk

+R−1
k

)
,(10.7)

where the constant is chosen so that |hk(z)| ≤ ǫk on Uk. Also note that
∑∞

k=1 ǫk is as

small as we wish if we choose the parameters defining f to all be large enough.

Corollary 10.7. For k ≥ 1, f ′ is non-zero on Vk.

Proof. By the Cauchy estimate, for z ∈ Vk

|hk(z)| ≤
ǫk

dist(Vk, U c
k)

=
4ǫk
Rk

.

Thus

f ′(z) = Ck

(
z2mk(1 + hk(z))

)′

= Ck

(
2mkz

2mk−1(1 + hk(z)) + z2mkh′k(z)
)

= Ckz
2mk−1 (2mk(1 + hk(z)) + zh′k(z))

Since |z| ≃ Rk for z ∈ Vk,

|f ′(z)| = |Ck| · |z|2mk−1

(
2mk +O(ǫkmk) +O

(
|z| ǫk|Rk|

))
≥ |Ck| · |z|2mk−1mk. �
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11. The first annulus estimate: Ak+1 ⊂ f(Ak)

Finally, we start proving the inclusions (2.1), which control the dynamics of f .

Recall that for k = 1, . . . we set

Ak = {z : 1
4
Rk ≤ |z| ≤ 4Rk}, Bk = {z : 4Rk ≤ |z| ≤ 1

4
Rk+1},

Vk = {z : 3
2
Rk ≤ |z| ≤ 5

2
Rk},

Suppose A = {z : a ≤ |z| ≤ b}. Let ∂iA = {z : |z| = a} denote the “inner”

boundary of A, and let ∂oA = {z : |z| = b} denote the “outer” boundary. Clearly

∂A = ∂iA ∪ ∂oA. Throughout this section and the next we will use the following

elementary facts about analytic functions on annuli.

Lemma 11.1. Suppose g is a holomorphic on an annulus W = {a < |z| < b} and

continuous up to the boundary. Let U = {c < |z| < d}.
(1) Assume |g(z)| ≤ c on ∂iW and |g(z)| ≥ d on ∂oW . Then U ⊂ g(W ).

(2) Suppose g has no zeros in W and that |g(∂W )| ⊂ g(U). Then g(W ) ⊂ U .

Proof. To prove (1), note that g(W ) must contain points in U since it is connected

and contains points in both complementary components of U . If g(W ) omits a point

w of U , then there is a point in U that is on the boundary of g(W ). This point is in

g(W ), but it is not in g(W ), since holomorphic maps are open maps, and it is not in

g(∂W ) by our boundary assumptions. But g(W ) = g(W ) = g(∂W ∪W ) since g is

continuous and W is compact. This is a contradiction, so U ⊂ g(W ).

To prove (2), note that by the maximum principle |g| ≤ d on W . If g has no

zeros, then we can apply the maximum principle to 1/g to deduce |1/g| ≤ 1/c on

W or |g| ≥ c, as desired. (Note that if g is non-constant then we can improve the

conclusion to g(W ) ⊂ U , since g is an open mapping in this case.) �

Lemma 11.2. Assume N ≥ 3. For k ≥ 1, Ak+1 ⊂ f(Vk) ⊂ f(Ak). Moreover, the

inner boundary of Vk maps into Bk and its outer boundary maps into Bk+1.
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Proof. The second inclusion is trivial, so we only prove the first. By Corollary 10.3,

Lemma 10.5, and (10.5) we know that if |z| = 3
2
Rk, then

|f(z)| ≤ Ck|z2mk |(1 + ǫk)

≤ Ck

(
3

4

)2mk

(2Rk)
2mk · (1 + ǫk)

≤
(
3

4

)2mk

2 ·Rk+1 · (1 + ǫk)

≤ 4 ·
(
3

4

)2mk

·Rk+1

≤ 1

4
· Rk+1.

In the other direction, by Lemma 10.4 we have |Ck|leq1, so

|f(z)| ≥ Ck|z2mk |(1− ǫk) ≥
1

2

(
3

2

)2mk

R2mk

k ≥ 4Rk.

Thus f(∂iVk) ⊂ Bk. Similarly, if |z| = 5
2
Rk, then

|f(z)| ≥
(
5

2

)2mk 1

2
·Rk+1 · (1− ǫk) > 4 ·Rk+1,

and

|f(z)| ≤ 2 · Ck ·
(
5

4

)2mk

· (2Rk)
2mk ≤ 4 · 22mk ·Rk+2 ≤

1

4
Rk+2,

where the last inequality holds by Corollary 8.2. Thus f(∂oV )k) ⊂ Bk+1. Hence

f(Vk) contains Ak+1 by part (1) of Lemma 11.1, and the images of the boundaries of

Vk satisfy the desired inclusions. �

12. The second annulus estimate: f(Bk) ⊂ Bk+1

Recall that ∂iAk = {z : |z| = Rk/4} and ∂oAk = {z : |z| = 4Rk} denote the inner

and outer boundary circles of Ak.

Lemma 12.1. If R ≥ 8 and k ∈ S, then f(∂oAk) ⊂ Bk+1 and f(∂iAk) ⊂ Bk.

Proof. Suppose j ≥ 1. By Lemma 10.5 and Corollary 10.4

min{|f(z)| : |z| = 4Rk} ≥ 1

2
|Ck| · |4Rk|2mk ≥ 4Rk+1.
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On the other hand, using |Ck| ≤ |Ck+1| (Lemma 10.4), (10.5), and Corollary 8.2 we

get:

max{|f(z)| : |z| = 4Rk} ≤ 2|Ck| · |4Rk|2mk

≤ 2|Ck+1| · |2Rk|2mk22mk

≤ 4Rk+12
2mk

≤ 1

4
Rk+2

Thus f(∂oAk) ⊂ Bk+1.

The inner boundary is similar, but easier. Using Lemma 10.6 and (10.3)

min{|f(z)| : |z| = 1

4
Rk} ≥ 1

2
|Ck| ·

(
Rk

4

)2nk

≥ 1

2
|Ck| ≥ 4Rk.

For the other direction, the maximum principle says

max{|f(z)| : |z| = 1

4
Rk} ≤ max{|f(z)| : |z| = 2Rk} = Rk+1

which is only a factor of 4 larger than we want. However, using Lemma 10.2 and

assuming R is large enough that the error term there is at most 2, we get

max{|f(z)| : |z| = 1
4
Rk}

max{|f(z)| : |z| = 2Rk}
≤ 2 · max{|Hnk

(z/Rk)| : |z| = 1
4
Rk}

min{|Hnk
(z/Rk)| : |z| = 2Rk}

≤ 2 · (Rk/4)
nk + 2

(2Rk)nk − 2

≤ 4 · 8−nk
1 +R−nk

k /2

1−R−nk

k /2

≤ 1

4
,

if R and N are large enough, say R ≥ 8 and N ≥ 3. This proves f(∂iAk) ⊂ Bk. �

Lemma 12.2. If R ≥ 8 and k ≥ 1, k 6∈ S then f(Ak) ⊂ Bk ∪ Ak+1 ∪ Bk+1.

Proof. The proof that

max{|f(z)| : z ∈ Ak} ≤ 1

4
Rk+2,
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is the same as in Lemma 12.1. The argument for the inner boundary of Ak is only

slightly different. If |z| = 1
4
Rk and k 6∈ S then Lemma 10.3 gives

min{|f(z)| : |z| = 1

4
Rk} ≥ 1

2
|Ck| · (

1

4
Rk)

2mk

≥ 4Rk · (
1

4
Rk)

2mk

≥ 4Rk

Since k 6∈ S, a has no zeros in Ak, so applying part (2) of Lemma 11.1 completes the

proof. �

Corollary 12.3. For k ≥ 1, f(Bk) ⊂ Bk+1.

Proof. By Lemmas 12.1 (for k ∈ S) and 12.2 (for k 6∈ S) both the inner and outer

boundaries of Bj map into Bj+1. Since f has no zeros in Bk, the corollary follows

from part (2) of Lemma 11.1. �

Corollary 12.4. For k ≥ 1, Bk is in the Fatou set of f .

Proof. Bk maps into Bk+1 and hence iterates uniformly to infinity. Thus the iterates

of f form a normal family on Bk. �

13. The Julia set in Ak

Recall that Ωp
m denotes the “petals” of Ωm, i.e., the m components of |Hm(z)| < 1

other than the central component Ω0
m that contains the origin. See Section 9 and

particularly Figure 4.

Lemma 13.1. If k ∈ S, J (f) ∩ Ak ⊂ Vk ∪ (Rk · Ωp
nk
).

Proof. We will break the complement of Vk ∪ (Rk · Ωp
nk
) in Ak into three pieces and

verify that each of them is in the Fatou set.

First, there is the annulus that lies between Vk and the outer boundary of Ak. The

outer boundary of Ak maps into Bk+1 by the proof of Lemma 12.1 and the outer

boundary of Vk maps into Bk+1 by Lemma 11.2. Since f has no zeros between these

circles, this region maps in Bk+1 by part (2) of Lemma 11.1 and so is in the Fatou

set by Corollary 12.4.

Second, consider the region between the inner boundary of Ak and the boundary

of Rk ·Ω0
mk

. From the proof of Lemma 12.1 we know the inner boundary of Ak maps
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into Bk. Since the inner boundary of Vk also maps into Bk we can use the maximum

principle to deduce the boundary of Rk ·Ω0
mk

also maps into Bk. Since f has no zeros

in this region, the minimum and maximum principles imply it maps into Bk.

Finally, there is the region between the union of petals, Rk · Ωp
mk

and the inner

boundary of Vk. Fix 0 < δ < 1 and note that this region is a subset of

Tk = {z : 1
4
Rk ≤ |z| ≤ 3

2
Rk, H(z/Rk) > δ}.

To show f(Tk) ⊂ Bk, we need to prove the two inequalities

max{f(z) : z ∈ Tk} ≤ 1

4
Rk+1, min{f(z) : z ∈ Tk} ≥ 4Rk.

The first follows from the maximum principle and the fact that the inner boundary

of Vk maps into Bk. The second follows from

min{|f(z)| : z ∈ Tk} ≥ 1

2
|Ck| ·H(z/Rk) ≥

δ

2
|Ck|

≥ δ2−#(Sk)−1Rnk

k

∏

j∈Sk−1

R
−nj

j

≥ δ2−#(Sk)−1Rnk

k

∏

j∈Sk−1

R
−nj

k−1

≥ δ2−#(Sk)−1Rnk

k ·R
−

∑
j∈Sk−1

nj

k−1

By (6.4) this becomes (recall 2mk−1 = nk for k ∈ S)

≥ δ2−#(Sk)−1Rnk

k ·R−2mk−1+2N

k−1 ≥ δ2−#(Sk)−1R4
k

(
Rnk−4

k

Rnk

k−1

)
R2N

k−1.

We now use Lemma 8.1

≥ δ2−#(Sk)−1 ·R4
k · R

(2N−1+mk−1/2)(nk−4)−nk+2N

k−1

If N ≥ 4 then nk ≥ 16, so this becomes

≥ δ2−#(Sk)−1R4
k ·R

96+6mk−1−nk+16
k−1
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and again we use mk−1 = mk/2 = nk/2 (since k ∈ S) to get

≥ δ2−#(Sk)−1R4
k ·R128

k−1 ·R2nk

k−1

≥ δR4
k ·Rnk

k−1.

This is larger than 4Rk as long as

δ ≥ R−3
k ·R−nk

k−1 . �(13.1)

Recall that Hm is a conformal map of each petal in Ωp
m to the unit disk. Thus

the part of the petal were |Hm(z)| ≤ δ has diameter similar to δ times the diameter

of the petal. Since the components of Rk · Ωp
mk

(the “petals”) each have diameter

≃ Rk/mk, the part of the Julia set contained in each petal has diameter at most

(Rk/mk) · R−3
k /R−nk

k−1 ≪ R−2
k /m2

k by (13.1). (And we have not been careful; the

actual size is much smaller). Thus the boundary components of the Fatou component

containing Bk will be tiny compared to the component itself, except for the inner

and outer boundary components (those separating the component from 0 and ∞
respectively).

14. Critical points are in the Fatou set

An entire function is called hyperbolic if the set of singular values (critical values

and finite asymptotic values) is bounded and all such points iterate to attracting

cycles. See, e.g., [38]. These conditions allow one to iterate a small neighborhood of

a Julia set point until it grows to about unit size, without introducing much distortion.

Our function f has an unbounded set of critical values, so it is not hyperbolic,

but we claim that all the critical points of f are in the Fatou set. In particular, the

distance from the critical set to the Julia set is strictly positive and critical points

in Ak will be distance about Rk/mk from the Julia set, i.e., the distance to the

Julia set grows almost linearly with distance from the origin. This weaker version of

hyperbolicity will be enough to show that small components of the Fatou set can be

iterated under f until they become large, also with only small distortion.

Lemma 14.1. For k ≥ 1, k 6∈ S, f has no critical points in Ak.

Proof. By Lemma 10.3 we know that f(z) = Ckz
2mk(1 + h(z)) where h is a holo-

morphic function on a Rk/2 neighborhood of Ak such that |hk| = O(1/Rk). By the
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Cauchy estimate, |h′k| = O(1/R2
k) on Ak. Differentiating and using |z| ≃ Rk for

z ∈ Ak, we get

f ′(z) = Ck2mkz
2mk−1

(
1 +O

(
1

Rk

))
+ Ckz

2mkO

(
1

R2
k

)

= Ckz
2mk−1

(
2mk +O

(
mk

Rk

)
+O

(
z

R2
k

))

= Ckz
2mk−1

(
2mk +O

(
mk

Rk

)
+O

(
1

Rk

))
.

Since Rk ≫ mk, this shows f
′ is never zero on Ak. �

Lemma 14.2. Suppose k ∈ S. Any critical point z of f in Ak satisfies f(z) ∈ Bk,

and hence it is in the Fatou set.

Proof. By Lemma 13.1, we need only check critical points that lie either in Vk or in

the union of petals Rk · Ωp
nk
. There are no critical points in the former by Lemma

10.7. Thus we are reduced to checking if there are any critical points z ∈ Rk · Ωp
mk

with H(z/Rk) < 1/2. We claim that there are none.

Lemma 10.2 shows that for z ∈ Ak,

f(z) = CkHnk
(
z

Rk

)(1 + h(z)),

where h is holomorphic on Ak and |h(z)| = O(R−1
k ) on Ak. Therefore by Cauchy’s

estimate |h′(z)| = O(R−2
k ) in the petals (which are distance ≃ Rk from ∂Ak). By the

product rule,

f ′(z) = CkH
′
nk
(
z

Rk

)
1

Rk

(1 + h(z)) + CkHnk
(
z

Rk

)h′(z).

So at a critical point of f we must have

H ′
nk
(
z

Rk

) =
RkHnk

(z/Rk)h
′(z)

1 + h(z)

=
RkHnk

(z/Rk)O(R
−2
k )

1 +O(R−1
k )

= Hnk
(z/Rk)O(R

−1
k )

Using that

max
|w|≤2

|Hnk
(w)| ≤ 2nk(2 + 2nk) ≤ 2 · 22nk = 21+2nk ,



A TRANSCENDENTAL JULIA SET OF DIMENSION 1 37

we get

H ′
nk
(
z

Rk

) = O

(
21+2nk

Rk

)
.

From this we want to deduce that H must be large at the critical point of f .

A simple calculation shows that

1−Hm(z) = 1− zm(2− zm) = (1− zm)2 =

(
H ′

m(z)

2mzm−1

)2

.

Therefore, at a critical point of f

|1−Hnk
(z/Rk)| =

∣∣∣∣
H ′

nk
(z/Rk)

2nkznk−1

∣∣∣∣
2

≤
∣∣∣∣
1

2nk

H ′
nk
(z/Rk)(2/Rk)

nk−1

∣∣∣∣
2

.

≤ 1

4n2
k

22+6nkR
−2(nk−1)
k

≤ n−2
k 28nkR−2nk+2

k

Assume R ≥ 128 = 27. By Corollary 8.3 we get Rk ≥ (2R)2
kN ≥ 2R ≥ 28, so

|1−Hnk
(z/Rk)| ≤ n−2

k 28nk(28)(−2(nk−1)

≤ n−2
k 28nk−16(nk−1) ≤ n−2

k 2−8(nk−2)

≤ n−2
k ≤ 1

4
since nk ≥ 2 (since N ≥ 1). Hence |H(z/Rk)| ≥ 3/4 at such a critical point. �

Next we address the critical points near the origin.

Lemma 14.3. We can choose R in the definition of f so that any critical points of f

in {|z| < R} are in the Fatou set. Moreover, such an R may be as large as we wish.

Proof. The idea of the proof is simple: we show that the critical points of f iterate to

infinity so quickly that we can choose R (and hence R1) so that the annulus A1 fits

“in between” the orbits of these points. Thus the critical orbits land in Fatou set, and

hence the critical points were in the Fatou set to begin with. We will first describe

the critical orbits for the polynomial F0, and then use the fact that f approximates

F0 as closely as we wish if R is large enough.

Since F0 is the Nth iteration of the degree two polynomial pλ(z) = λ(2z2 − 1),

it has 2N − 1 critical points consisting of 0, its two preimages under pλ, the four
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pre-images of those two points, going back to the 2N−1 pre-images of 0 under pN−1
λ .

The critical values of F0 are the 2
N − 1 images of the critical points under F0. These

are the same as the first N iterates of 0 under pλ. The F0-images of the critical values

are the (N + 1)st through (2N)th iterates of 0. In particular, the post-critical set

does not have any points in the

K = {z : 2|pNλ (0)| ≤ |z| ≤ 1

2
|pN+1

λ (0)|}.

In fact, the post-critical set has distance at least 1 from this set (actually, much larger

distance).

Now iterate K under F0 until it surrounds the disk {|z| < 2NR2N} and then choose

R1 so that A = {z : R1/8 ≤ |z| ≤ 8R1} is contained in this iterate of K (we can do

this because the moduli of the images of K increase to infinity under iteration, hence

the images contain round annuli of arbitrarily large modulus). With this choice, the

critical values of F0, iterated by F0, miss the annulus A. In fact, if we iterate any

point that is within distance 1 of a critical point, it also misses the annulus A. We

claim that if the parameter R is large enough, then the iterates the critical values of

f by f do not hit A1 = {z : R1/4 ≤ |z| ≤ 4R1} ⊂ A, assuming that we stop iterating

when the orbit leaves {|z| ≤ 4R1}.
To prove the claim, choose R so large that K ⊂ {|z| < R}. On {|z| < R}, the

function f is a small perturbation of F0; we have

f(z) = F0(z)

(
1 +O

(
1√
R1

))
,

by (6.9). However the number of iterates under f needed to go from size ≃ λ to ≃ R1

is only O(log logR1). So if we iterate a point by f until it has absolute value at least

4R1, and iterate the same point under F0, the ratio between the absolute values of

corresponding points is at most

(1 +O(R
−1/2
1 ))O(log logR1) = 1 +O(R

−1/2
1 log logR1) ≤ 2,

if R1 (hence if R) is large enough. Since the iterates under F0 miss A, the iterates

under f will miss A1 = {z : 1
4
R1 ≤ |z| ≤ 4R1}, as desired. �
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15. Negative indices

If the orbit of z visits ∪∞
k=1Ak infinitely often, there may still be iterates that land

near the origin and then iterate several steps in D1 = {z : |z| < R1/4} before reaching

A1. It will be convenient to think of these intermediate steps as still being in some

Ak, so in this section we define Ak for non-positive indices.

Define A0 = {z ∈ D1 : f(z) ∈ A1}. More generally, for k > 0, let A−k be the set of

points so that {z, f(z), . . . , fk(z)} ⊂ D1 and fk+1(z) ∈ A1. Thus A−k maps to A1 in

k + 1 steps without ever leaving D1. Alternatively, these are the points in this disk

that iterate to A1 in k + 1 steps and don’t visit A1 on any earlier iteration.

We make analogous definitions of Vk and Uk for k ≤ 0.

For k ≤ 0, each Vk is a union of topological annuli that surround the Cantor set

E (see Section 4), and each component of Vk, k ≤ 0 is mapped by f to a component

of Vk+1. From the discussion in Section 14, we know that the 2N − 1 critical points

of f that are in D(0, R) are is the same Fatou component. This means there is

an integer T so that V−k surrounds all these points for k = 0, 1, . . . T and does not

surround any critical points for k > T . Hence there is one connected component of

V−k for k = 0, . . . , T and that f acts as a 2N -to-1 covering map from V−k to V1−k

for these indices. The set V−T−1 has 2
N distinct connected components that are each

mapped conformally to V−T by f . Similarly, V−T−j has 2jN connected components,

and groups of 2N are each mapped conformally to some component of V−T−j+1.

Since f is conformal on Uk, the map f : V−k 7→ V−k+1 actually extends to be

conformal of a uniformly larger annulus, so by the distortion theorem for conformal

maps (see e.g., Section I.4 of [25]) it has bounded distortion independent of the

component and independent of k.

Previously we have defined mk for k ≥ 0. We now define mk = 2N for −T ≤ k ≤ 0,

and mk = 1 for k < −T . Note that the covering map f : Ak → Ak+1, k ≤ 0 has

degree mk. Let M0 = 2NT =
∏

k≤0mk. Then M0 bounds the number of pre-images

of a single point z ∈ V1 that will be found in any connected component of Vk, k ≤ 0.

Corollary 15.1. Let A = ∪∞
k=−∞Ak. Then f

−1(A) ⊂ A.

Proof. This follows from the definitions and Lemma 12.3. �
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16. Partitioning the Julia set

We now have shown that if z is in the Julia set, then either the orbit of z eventually

lands on the Cantor repeller E (the set of such z we denote by Ẽ), or it stays in

A = ∪∞
k=−∞Ak forever (these points we denote by X). By construction, E has small

Hausdorff dimension, and hence so does Ẽ. Thus to prove Theorem 1.3 we need only

consider X = J (f) \ Ẽ. We will split X into two pieces. We first need to observe a

simple rule about how orbits can behave:

Lemma 16.1. Any connected component W of f−1(Ak) is contained in Aj for some

j ≥ k − 1. If j ≥ k, then j ∈ S.

Proof. If j ≤ 0 then f(Aj) = Aj+1. If j ≥ 1 and j 6∈ S then f(Aj) ⊂ Bj ∪Aj+1∪Bj+1

by Lemma 12.2. Thus in either case, Aj+1 is the only set of the form Ak hit by f(Aj).

Thus if f(Aj) hits Ak for some k < j + 1, we must have j ∈ S. �

The casesW ⊂ Ak−1 andW ⊂ Aj, j ≥ k in the previous lemma are quite different.

We call these type I and type II respectively. See Figure 6.

Recall that Ωm, Ω
0
m and Ω∞

m are defined in Section 9.

Lemma 16.2. If k ∈ S, then the only components of f−1(Aj), j ≤ k, that are inside

Ak are inside the petals of Rk · Ωmk
. (If k 6∈ S, there are no such pre-images.)

Proof. Since Hmk
≥ 1 on Ω∞

mk
and Ck ≥ 8Rk, there are no pre-images in (Rk · Ω∞

mk
).

On ∂(Rk ·Ω0
mk

), f is bigger than 4Rk by Lemma 10.2. Also, ∂Ak∩(Rk ·Ω0
mk

) ⊂ ∂Bk−1

and hence is mapped into Bk by f . Thus |f | ≥ 4Rk on both boundary components

of Ak ∩ (Rk · Ω0
mk

). Since f has no zeros in Ak ∩ (Rk · Ω0
mk

), the minimum principle

holds on this region and the lemma follows. �

If the orbit of z stays in A = ∪∞
k=−∞Ak forever, we associate to z the sequence of

integers k(z, n), n ≥ 0, such that fn(z) ∈ Ak(z,n). By the discussion above,

k(z, n+ 1) ≤ k(z, n) + 1 if k(z, n) ∈ S,

k(z, n+ 1) = k(z, n) + 1 if k(z, n) 6∈ S.

Obviously any numerical sequence is either eventually strictly increasing or it is not.

We denote the points corresponding to each type of sequence by Z and Y respectively.

The dimensions of these two sets are given by:
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Figure 6. The darker ring is Ak. Inside, is the single type I pre-
image W ⊂ Ak−1 were f acts as 2mk−1-to-1 covering map. Outside,
there are infinitely many rings of type II pre-images in Aj, j > k, j ∈ S
(only one such ring is drawn) were f acts conformally. The picture is
not to scale; the inner pre-image should be much smaller and thinner;
the outer pre-images should be much further out and smaller (but their
conformal moduli are the same as that of Ak).

Lemma 16.3. Let Y ⊂ X be the set of points z such that k(z, n + 1) ≤ k(z, n)

infinitely often. Suppose α > 0. If λ, R and N are large enough, then dim(Y ) ≤ α.

Lemma 16.4. Let Z ⊂ X be the set of z so that k(z, n + 1) = k(z, n) + 1 for all

sufficiently large n. Then Z is a union of C1 closed Jordan curves. Moreover, Z has

locally finite 1-measure.

The set Z equals J (f) ∩ A(f) (the fast escaping points of the Julia set). The set

Y corresponds to everything that is not fast escaping and does not eventually land

on E. The escaping, but not fast escaping, set corresponds to the subset of Y where

the indices tend to infinity but are not eventually strictly monotonic.

17. Proof of Lemma 16.3

Since Y ⊂ A = ∪kAk, and Y is invariant under f , it suffices to show dim(Y ∩Am) ≤
α for any m, say m = 1. We will do this by building nested coverings of Y ∩A1 using
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certain components W n
k of f−n(Ak) that lie inside A1. We allow n = 0 where f 0 is

the identity map; hence the single element W 0
1 = A1 is our first covering.

We form generations of nested covers of Y ∩ Am by the following replacement

procedure. Suppose W n
k ⊂ f−n(Ak) is an element of the current cover. If z ∈ W n

k ,

then the definition of Y says that eventually fn+q(z) ∈ Aj with j < k + q. At this

point we stop and cover z by a component of the form W n+q
j . Thus Y ∩W n

k can be

covered by components of the form W n+q
j where q ≥ 1 and j ≤ k+ q− 1. We replace

W n
k by all components that arise in this way. Since every z ∈ Y ∩W n

k is in such a

component, we get another covering.

Instead of considering all j ≤ k + q − 1, it suffices to take just j = k + q − 1 if we

cover Y using the topological disks Ŵ n
k obtained by “filling in” the hole of W n

k (this

is also called the “polynomial hull” of W n
k ). Every component with j < k + q − 1 is

contained in such a hole andW n+q
k+q−1 and Ŵ

n+q
k+q−1 have the same diameter. Thus using

these does not change the sum in the definition of Hausdorff measure and dimension.

Note that using the filled-in components requires us to also consider the q = 0 case:

Y ∩ (Ŵ n
k \W n

k ) is covered by components of the form Ŵ n
k−1 in the next generation.

Thus to prove dim(Y ∩ Am) ≤ α, it suffices to show the α-sum of the diameters

tends to zero as we repeatedly refine the covers. In fact, we claim it tends to zero

geometrically fast (we will use this stronger estimate later in Sections 18 and 20).

We write the α-sum as two sums corresponding to q = 0 and q > 0:

∑

Wn
k−1⊂Ŵn

k

diam(W n
k−1)

α ≤ 1

4
diam(W n

k )
α(17.1)

∑

q≥1

∑

Wn+q
k+q−1⊂Wn

k

diam(W n+q
k+q−1)

α ≤ 1

4
diam(W n

k )
α(17.2)

Proof of (17.1). This is the easy case. If k ≥ 1, then W n
k−1 has just one component

in Ŵ n
k and its diameter is O(R−1

1 ) · diam(W n
k ), so its contribution is small. For k ≤ 0

there a bounded number (depending on N) of connected components of W n
k−1 inside

W n
k , and by Lemma 4.2 each such component has small diameter compared to W n

k if

λ is large enough. In either case we can make the left side of (17.1) small compared

to the right side of (17.1). �
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Proof of (17.2). By definition

W n+q
k+q−1 ⊂ W n

k ⊂ Am,

fn(W n+q
k+q−1) ⊂ fn(W n

k ) = Ak,

fn+1(W n+q
k+q−1) ⊂ Ak+1,

fn+2(W n+q
k+q−1) ⊂ Ak+2,

...
...

fn+q−1(W n+q
k+q−1) ⊂ Ak+q−1,

fn+q(W n+q
k+q−1) ⊂ Ak+q−1,

The point is that, by our choice of q, the annuli on the right increase monotonely until

the last one, which is repeated. The first q − 1 maps are restrictions of the covering

maps Ak+i−1 ⊃ f−1(Ak+i) → Ak+i (these were called case I earlier) and the final map

is the restriction of a petal map (case II). The ith covering map for i = 1, . . . q− 1 is

(1) 2mk+i−1-to-1, if k + i− 1 ≥ 1,

(2) 2N -to-1, if −T ≤ k + i− 1 ≤ 0,

(3) 1-to-1, if k ≤ −T .
Hence the number of possible new components when we replace a single component

W n
k by multiple components of the form W n+q

j is less than

2NT2qmk ·mk+1 · · ·mk+q−2 ≤ 2NT2qMk+q−2.

The size of a single pre-image is determined by the final petal map:

diam(W n+q
k+q−1) .

Rk+q−1

Rk+q

diam(W n
k ) .

diam(W n
k )

Rk+q−1

,

since Rk+q ≥ R2
k+q−1 by (5.7). Thus for each q, the total contribution to (17.2) is

O

(
2NT2qMk+q−2

(
diam(W n

k )

Rk+q−1

)α)
= O

(
2NT2qMk+q−2R

−α
k+q−1

)
· diam(W n

k )
α.

By Lemma 8.5 the sum of the terms inside the “big-Oh” term over q converges, and

is as small as we wish if R is large enough. �

This completes the proof of Lemma 16.3 and gives part (4) of Theorem 1.3. Before

proceeding with the proof of Lemma 16.4, we pause to prove part (5) of Theorem

1.3. Recall that I(f) denotes the escaping set of f and A(f) the fast escaping set.
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Corollary 17.1. For our example, dim(I(f) ∩ Y ) = dim(I(f) \ A(f)) = 0.

Proof. During the proofs of (17.1) and (17.2), we needed to take R large enough,

depending on α. However, if we only cover points whose orbits visit Aj for j ≥ J ,

then the same claims are true if RJ is large enough. Thus inequalities (17.1) and

(17.2) are true for any α > 0, if we take J large enough, depending on α. Thus the

set of points whose orbits eventually only visit Aj for j ≥ J has Hausdorff dimension

that tends to 0 as J → ∞ and hence the escaping points in Y have dimension 0. �

18. Proof of Lemma 16.4

The pre-imageW ⊂ Vk of the round annulus Vk+1 under a power function would be

another round annulus. Since f is a small perturbation of a power function, W will

be a small perturbation of a round annulus. We make this precise with the estimate:

Lemma 18.1. Suppose h is a holomorphic function on A = {z : 1 < |z| < 4} and

suppose that |h| is bounded by ǫ on A. Let H(z) = (1+ h(z))zm. For any fixed θ, the

segment S(θ) = {reiθ : 3
2
≤ r ≤ 5

2
} is mapped by H to a curve that makes angle at

most O(ǫ/m) with any radial ray it meets.

Proof. We want to look at the image of a circle under H and show that this image

at a point H(z) is close to perpendicular to the ray from the origin to H(z). The

angle between the ray and the image is arg(zH ′(z)/H(z)), so we want to show this

is small. By the Cauchy estimate, h′ is bounded by O(ǫ) on {z : 3
2
≤ |z| ≤ 5

2
}, so

z
H ′(z)

H(z)
= z

h′(z)zm + (1 + h(z))mzm−1

(1 + h(z))zm

=
zh′(z)

1 + h(z)
+
zmzm−1

zm

= O(ǫ) +m.

Hence arg
(
zH′(z)

H(z)

)
= O(ǫ/m). �

We can deduce thatW ⊂ Vk is a topological annulus whose width is approximately

Rk/2mk and whose boundary components are smooth curves that are ǫk-close to

circles (ǫk was defined in (10.7)).

For k ≥ 1, consider

Γk,n = {z ∈ Ak : f
j(z) ∈ Ak+j, j = 1, . . . , n}.
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These are nested topological annuli whose widths decrease to zero uniformly in j.

Each Γk,n has a foliation by closed analytic curves (including its boundary curves)

that go around Γk,n once, obtained by pulling back circles in Ak+n. By Lemma 18.1

the curves for Γk,n+1 make angle at most O(ǫk) with the curves for Γk,n. This is a

summable estimate, so we deduce that nested annuli Γk,n limit on a C1 Jordan curve

Γk that makes at most angle O(
∑

k ǫk) with the circular arcs foliating Vk. Therefore

Γk has finite length and this length is comparable to its diameter.

This deals with sequences that are strictly monotone and start at a value ≥ 1.

Every eventually strictly monotone sequence has a finite initial sequence that is fol-

lowed by an infinite strictly monotone sequence. The corresponding component of Z

maps onto one of the components discussed above by a map that is conformal on a

large neighborhood of the component and hence has bounded distortion with uniform

estimates. Thus every component of Z is a C1 curve with uniform estimates.

To finish the proof of the lemma, we have to show the sums of the lengths of all

the components of Z in a bounded region of the plane is finite. By the last sentence

of the previous paragraph it suffices to sum the diameters of the components. Since

each component of Z is associated by containment to a unique set of the form W n
k

(notation as in the proof of Lemma 16.3), the sum of the diameters over components

of Z is dominated by the sum of diameters over sets of the form W n
k . This is just

the α = 1 case of (17.1) and (17.2). To prove Lemma 16.3 we only needed the sum

over each cover to tend to zero, but here we use the fact that the cover sums decay

exponentially fast to see that the sum over all generations is finite.

This completes the proof of Lemma 16.4 and implies parts (1), (2) and (3) of

Theorem 1.3. The remaining sections prove part (6). This requires a more careful

geometric description of the shape of the Fatou components, which we shall give in

the next section.

19. The shape of the Fatou components

In this section we justify Figure 1 as the “shape” of general Fatou components and

describe this shape a little more precisely.

For k ≥ 1, consider the component Ωk that contains the inner boundary component

of Ak. This component has an outer boundary curve γk that separates it from ∞
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and is contained in Vk, and this is a C1 closed Jordan curve that approximates the

circle {|z| = 2Rk}.
The component Ωk has an inner boundary curve that is also the outer boundary

γk−1 of Ωk−1 if k ≥ 2. The other boundary components of Ωk are curves that we can

group into “levels” that lie on approximately circular curves that limit onto the outer

boundary γk. The levels are indexed by values of j ∈ S such that j ≥ k. Components

of level j ≥ k of Ωk are mapped onto the curve γj after 1 + j − k iterations of f .

If k ∈ S, then first level consists of mk components, one in each petal of Rk ·Ω0
mk

.

These boundary components lie inside the components W 1
k used to cover the set Y

in Section 16.3. The next level consists of (2mk) · · · (2mj) components and lie in the

pre-images under f j−k of the petals of Rj ·Ω0
mj

where j is the next element of S after

k. These correspond to the components W n+q
k+q−1 in Section 16.3 where q = j − k + 1.

Higher levels lie in similar pre-images corresponding to later elements of S. The level

corresponding to j ∈ S, j > k consists of mj · 2d components that lie approximately

distance Rk2
−d from the outer boundary, where d = 2(mk + · · ·+mj−1) (so 2d is the

degree of f as a covering map from fk−j(Vj) to Vj). Adjacent boundary components

in level j are about distance Rkm
−1
j 2−d apart.

For k ≥ 1, k ∈ S, Ωk contains mk critical points; the critical points of Hmk
are the

points where the petals join ∂(Rk ·Ω0
mk

), so the critical points of f are perturbations

of these. If k ∈ S, the map f acts as a 2mk-to-1 branched cover from Ωk to Ωk+1, with

the outer boundary mapping to the outer boundary (as a 2mk-to-1 map), the inner

boundary maps to the inner boundary (as a mk-to-1 map), the first layer boundary

components also map to the inner boundary (1-to-1 maps on each component) and

higher level components map 1-to-1 to components one level lower (so the second level

in Ωk becomes the first level in Ωk+1). The map on each boundary component in a

given level is 1-to-1, but 2mk different components will map to the same boundary

component of Ωk+1.

If k ≥ 1, but k 6∈ S, then the picture is the same except that there is no first level

corresponding to petals of Rk ·Ω0
mk

, but there are levels corresponding to each j ∈ S,

j > k as described above. All other components of the Fatou set eventually map

onto one of these by iterating f . For k ≤ 0, the Fatou components Ωk are defined as

inverse images of Ωk+1 under f . For −T ≤ k ≤ 0 this is a 2N -to-1 covering map and
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for k < T it is conformal (1-to-1). All the critical points of f are in the components

Ωk, k = −T and k ≥ 1, so every other component of the Fatou set is a conformal

image of one of these and hence has the same geometry as Ωk, for some k ≥ −T , up
to bounded distortion. When k 6∈ S, the action of f on Ωk is 2mk-to-1 on both the

outer and inner boundaries, and each component in a level of Ωk maps 1-to-1 to a

boundary component in the same level of Ωk+1 (but 2mk components map onto the

same image component).

20. Packing dimension equals one

A theorem of Rippon and Stallard [40] says that packing dimension agrees with the

local upper Minkowski dimension for Julia sets of entire functions. The local upper

Minkowski dimension is the upper Minkowski dimension of the Julia set intersected

with a neighborhood of any point in the Julia set; Rippon and Stallard show this is

constant (except possibly at one point). They also show that the packing dimension

is 2 for any function in the Eremenko-Lyubich class of transcendental entire functions

with bounded singular sets. Other conditions involving the growth of f that imply

packing dimension 2 are given in Bergweiler’s paper [9]. Interestingly, one of his

conditions is that all large circles centered at zero map to curves that deviate from

circles by a fixed amount; the exact opposite of the property that was crucial in this

paper (most large circles centered at zero are mapped very close to circles).

In addition to the standard results about dimension reviewed in Section 3 we will

also need a couple of other easy results. Recall that the Whitney decomposition of

an open set was defined in Section 3.

Lemma 20.1. Suppose a bounded open set Ω contains disjoint open subsets {Ωj} so

that Ω \ ∪jΩj has zero area. Then for any 1 ≤ s ≤ 2,

∑

Q∈W(Ω)

diam(Q)s ≤
∑

j

∑

Q∈W(Ωj)

diam(Q)s.

Proof. By rescaling, we can assume Ω has diameter at most 1. By the nested property

of dyadic squares, each square Q′ ∈ ∪jW(Ωj) is contained in some square Q ∈ W(Ω)

and almost every (area measure) point of Q is covered by the squares Q′ it contains.
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Thus
∑

Q∈W(Ω)

diam(Q)s =
∑

Q∈W(Ω)

diam(Q)s−2 · 2 · area(Q)

=
∑

Q∈W(Ω)

diam(Q)s−2


∑

j

∑

Q′∈W(Ωj),Q′⊂Q

2 · area(Q′)


 .

If Q′ ⊂ Q then diam(Q′) ≤ diam(Q) ≤ 1. Since s− 2 ≤ 0, this means diam(Q)s−2 ≤
diam(Q′)s−2. Using this and rearranging the sums gives

=
∑

j

∑

Q′∈W(Ωj)


 ∑

Q∈W(Ω),Q′⊂Q

diam(Q)s−2 · diam(Q′)2




≤
∑

j

∑

Q′∈W(Ωj)


 ∑

Q∈W(Ω),Q′⊂Q

diam(Q′)s−2 · diam(Q′)2




=
∑

j

∑

Q′∈W(Ωj)

diam(Q′)s.

The last equality holds because for each Q′ there is only one Q that contains it. �

Lemma 20.2. If f : Ω1 → Ω2 is biLipschitz, then for any 0 < s ≤ 2,
∑

Q∈W(Ω1)

diam(Q)s ≃
∑

Q∈W(Ω2)

diam(Q)s.

Proof. For any Q ∈ W(Ω1), the image f(Q) can be covered by O(1) elements of

W(Ω2), so the left hand side is bounded by a multiple of the right hand side. The

argument reverses, giving the lemma. �

Theorem 20.3. For our example, Pdim(J (f)) = 1.

Proof. By Lemma 3.2 we can bound the packing dimension by bounding the upper

Minkowski dimension of bounded pieces of the Julia set. We estimate the upper

Minkowski dimension using Lemma 3.1.

Consider the Fatou component Ωk that contains Bk−1. Its outer boundary γk is

in Ak and let Uk be the collection of all Fatou components contained inside γk. We

must show that for any s > 1
∑

diam(Qj)
s <∞
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where the sum is taken over all the Whitney squares for all these components. We

break this sum into sums over the Whitney squares in each Fatou components. Then

we use two estimates. First,
∑

Ω∈Uk

diam(Ω)s <∞(20.1)

where the sum is over all components Ω of the Fatou set that are contained in a

bounded set. This was already done in the proof of Lemma 16.4 for s = 1, and this

implies the result for s > 1.

Second, we claim that for any s > 1 there is a Cs <∞ so that
∑

j

diam(Q)s ≤ Csdiam(Ω)s,(20.2)

uniformly for every component Ω of the Fatou set. The sum is over the Whitney

squares contain in a single component Ω, but the constant Cs must be independent

of the component Ω.

This follows from our knowledge of the geometry of the Fatou components, as

described in Sections 18 and 19. The boundary components of a given level all lie on

a Lipschitz graph in polar coordinates for the correct choice of center. If we remove

this curve from the Fatou component Ω, we cut it into topological annuli, each of

which is biLipschitz equivalent to a round annulus of the form Aj = {z : r < |z| <
(1+δj)r} and where the δj decrease rapidly with the level and r ≃ diam(Ω). A direct

computation for a single round annuli shows the s-Whitney sum is

O

(
1

s
· δs−1

j · rs
)
.

and for a fixed r. Since the δ’s go to zero rapidly (more than exponentially fast), this

is summable over j and is bounded by

O

(
1

s
· rs
)

= O(diam(Ω)s).

Lemmas 20.1 and 20.2 then apply to prove (20.2). �

Theorem 20.4. The 1-dimensional packing measure of the example constructed in

this paper is infinite. In fact, the measure of J (f) ∩ D(x, r) is infinite for any

x ∈ J (f) and r > 0.
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Proof. Consider one Fatou component, say the one with its outer boundary in V1. As

described in Section 19, the jth layer layer of boundary components have diameter

at most Dj = R12
−dj/mj and have distance at least R12

−dj = mjDj from the outer

boundary (and from other layers of boundary components). Thus we can put dis-

joint disks of radius ≃ Dj around each component of the jth layer, and the sum of

diameters is comparable to R1. Since we can do this for every layer, the total sum of

diameters is infinite. Thus the 1-dimensional packing pre-measure of the boundary

of the Fatou component is infinite.

If we take any neighborhood of any point in the Julia set, it contains a Fatou

component that iterates to the one described above with bounded distortion, and

hence the boundary of that component also has infinite packing pre-measure. If we

take a bounded piece of the Julia set, say the part J1 inside A1, the packing measure is

computed from the pre-measure by taking countable coverings. Since the pre-measure

of a set and its closure are the same, we can assume the sets in the countable union

are closed. By Baire’s theorem, if J is a countable union of closed sets, one of them

must have interior relative to J1, and hence contains the Julia set intersected with

some disk centered on the Julia set. By the argument above, this piece contains the

entire boundary of some Fatou component that has infinite 1-dimensional packing

pre-measure. Thus J1 must have infinite 1-dimensional packing measure. �

This proves part (6) of Theorem 1.3 and thus completes the proof of that theorem.

Corollary 20.5. The set J (f)∩D(x, r) is not contained in a curve of finite length,

for any x ∈ J (f) and r > 0.

Proof. Any subset of a rectifiable curve has finite 1-dimensional packing measure. �

21. Remarks and questions

(1) There seem to be no known examples of transcendental entire functions whose

Julia sets have packing dimension strictly between 1 and 2, but it may be possible to

build such examples using our construction by replacing F0 by a polynomial whose

Julia set has Hausdorff and packing dimension bigger than 1 (but verifying this may

be difficult). If we vary F0 in the construction and leave the rest alone, does the

dimension of J (f) vary continuously? Figure 7 shows the known pairs of Hausdorff
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Figure 7. Since packing dimension is an upper bound for Hausdorff
dimension, the shaded region illustrates the possible values for the pairs
(dim(J ),Pdim(J )) for a transcendental entire function. Black repre-
sents known examples: the dot at (2, 2) is ez and McMullen’s examples,
the black line {(t, 2) : 1 < t < 2} are Stallard’s examples and the dot
at the bottom is the example in this paper.

and packing dimensions that can occur for transcendental entire functions. Which of

the remaining possibilities actually occur? A few interesting special cases are:

• Can we have 1 < dim(J ) = Pdim(J ) < 2?

• Can we have dim(J ) = 1,Pdim(J ) = 2?

• Does every packing dimension between 1 and 2 occur?

(2) Bergweiler and Zheng [12] have shown that multiply connected Fatou compo-

nents can sometimes have uniformly perfect boundaries, even though the Julia set

itself is never uniformly perfect if there are multiply connected Fatou components.

Our example does not have this property. Can we have dim(J (f)) = 1 for an ex-

ample with multiply connected Fatou components whose boundaries are uniformly

perfect?

(3) A stronger version of the last question is to ask if there is an example with

dim(J (f)) = 1 where the Fatou components are finitely connected? Can we take the

boundary components to be rectifiable? Finitely connected Fatou components can

exist by examples of Masashi and Shishikura [29], and such components may make it

easier to understand the rectifiability of the Julia set. Is there a transcendental Julia

set of dimension 1 where the Fatou components are all simply connected?
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(4) We noted at the end of Section 5 that our examples all have order zero, and

can be taken to grow as slowly as we wish by taking S sparse enough. Can we build

examples of positive or infinite order? This may be possible by replacing the use

of the degree two Chebyshev polynomial in this paper by higher degree Chebyshev

polynomials or generalized Chebyshev polynomials. Can we use such constructions

to show the conditions in Bergweiler’s paper [9] implying Pdim(J ) = 2 are sharp?

(5) The boundaries of the Fatou components in our example are at least C1 curves.

Can this be improved to C2? C∞? Analytic? Smooth curves can occur as the

boundaries of Fatou components of rational maps, (see [2] and its references for the

history of such results), and it would be interesting to see if they also occur in this

context.

(6) The connected components of the Julia set constructed in this paper are all

either points or continua of Hausdorff dimension one. This also occurs for many other

transcendental functions, such as certain exponential functions where the connected

components of the Julia set are all curves that tend to infinity (e.g., see [28], [7]).

However, the situation for polynomials is open. If a polynomial Julia set is connected,

then it is either a generalized circle/segment or has Hausdorff dimension strictly

greater than 1 (this follows from work of Zdunik [51] and Przytycki [36]). Is this also

true of the non-trivial connected components when the Julia set is disconnected? In

other words, if J (p) is disconnected, is every connected component either a point or

a set of Hausdorff dimension strictly greater than 1?

(7) Is there a transcendental Julia set which is a subset of rectifiable curve on the

Riemann sphere? Corollary 20.5 says this is not true for our example. If such an

example exists, it would be the ultimate in “smallness” for a transcendental Julia set.
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