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Equi-triangulation of polygons
Christopher J. Bishop

Abstract. We prove that any two polygons with the same area can be triangulated using the
same set of triangles. This strengthens the 200-year-old Wallace–Bolyai–Gerwien theorem
that equal area polygons have an equi-dissection.

Keywords: dissections, triangulations, Wallace-Bolyai-Gerwien theorem, dynamical
system

1. INTRODUCTION. A simple polygon P is a Jordan curve in the plane consisting
of a finite number of line segments. A polygonal region Ω is a compact set in the
plane whose boundary P = ∂Ω is a simple polygon, and so that Ω is the closure
of its interior.. A dissection of Ω is a finite collection of polygonal sub-regions that
have disjoint interiors and whose union is Ω. We say that dissections of two polygonal
regions are equivalent if there is a 1-to-1 correspondence between their pieces so that
corresponding pieces are images of each other under a translation and rotation (an
orientation preserving isometry). If two polygonal regions are dissection equivalent,
i.e., if they have an equi-dissection, then clearly they must have the same area, and the
Wallace-Bolyai-Gerwien (WBG for brevity) theorem says the converse is also true:
any two polygonal regions with equal areas have an equi-dissection. See Figure 1 for
an example.

Figure 1. Equivalent dissections of a triangle and a square (and two intermediate rectangles showing
how the pieces move).

A triangular dissection is one where all the pieces are triangles. A triangular dis-
section is called a triangulation if the simplex condition holds, i.e., any two pieces are
either disjoint or they intersect in a common vertex or a common edge. See Figure 2. A
dissection that is not a triangulation contains at least one exceptional point, i.e., a ver-
tex of one piece that is an interior edge point of another piece. The dissection in Figure
2 has seven exceptional points. Although triangulations are much more restrictive than
dissections, we will show that an analog of the Wallace-Bolyai-Gerwien theorem still
holds for them.

Theorem 1. Any two polygonal regions with the same area have triangulations that
use the same set of triangles (up to rotation and translation).
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Figure 2. A dissection (left) and a triangulation (right) of a polygon.

We call this an equi-triangulation of the domains. Despite a large literature on op-
timal meshing and triangulation, the question of whether two equal area polygons
always have an equi-triangulation seems not to have been previously considered.

Triangulations are generally more common than dissections in applications in topol-
ogy, numerical analysis and computer science. This is because triangulations have a
number of useful properties compared with triangular dissections, e.g., they remain
triangulations under small perturbations of the vertices, functions on the vertices can
be extended linearly to the edges and faces, and the dual graph has degree at most
three, which is very useful in a variety of data structures and algorithms.

The basic idea behind Theorem 1 is to convert an equi-dissection of two polygonal
regions into a simple dynamical system Φ : X → X , where the spaceX , to be defined
precisely in Section 4, will consist of copies of the edges of the dissection pieces plus
two other points. We will show that we can refine (see Section 2) the equi-dissection
to an equi-triangulation if and only if the orbits of the exceptional points are finite.
Simple examples show that these orbits can be infinite in general (see Section 7), but
we will prove that any equi-dissection can be modified to give another equi-dissection
of the same regions so that in the new dynamical system all exceptional points have
finite orbits.

2. REFINEMENTS. One dissection of a polygonal region Ω is a refinement of an-
other dissection of Ω if each piece of the second dissection is a union of pieces from
the first dissection. It is well known that any polygonal region Ω can be triangulated
without adding new vertices (e.g., Theorem 3.1 of [4]). By triangulating each piece of
a dissection (include any exceptional points on the boundary of a piece as vertices of
that piece), we observe that any dissection has a refinement that is a triangulation. See
Figure 3. We will prove Theorem 1 by showing that given any equi-dissection of two
polygons there is a refinement that gives an equi-triangulation of the same polygons.

Figure 3. A triangular dissection (left) and a refinement that is a triangulation (right).

Given two dissections of the same polygonal region Ω, we can form a third dissec-
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tion that is a refinement of both, by taking all intersections of pairs of pieces, one from
each dissection. This is called their common refinement. Figure 4 shows the common
refinement of two dissections of a square.

Lemma 2. Dissection equivalence is transitive.

Proof. Suppose Ω1,Ω2,Ω3 are polygonal regions so that Ω1 and Ω2 have an equi-
dissection, and similarly for Ω2 and Ω3. Thus we have two dissections of Ω2 and their
common refinement gives an equi-dissection of Ω1 and Ω3. See Figure 4.

Figure 4. Dissection equivalence is transitive. The common refinement of the two dissections of the
square in the top row can be rearranged into either of the other two shapes (bottom row).

3. THE WALLACE–BOLYAI–GERWIEN THEOREM. According to Ian Stew-
art [1] the Wallace-Bolyai-Gerwien theorem seems to have been proven by William
Wallace around 1808, and independently by Paul Gerwien in 1833, in response to a
question of Wolfgang Bolyai (father of the hyperbolic geometry Janos Bolyai). Ed-
uardo Giovannini [2] credits John Lowry with a solution in 1814, in response to a
question of Wallace, and cites independent proofs by Bolyai (somewhat sketchy) in
1831 and by Gerwien (very detailed) in 1833. See also the historical remarks in [3].
The proof of the theorem is elementary and well known, but we sketch it here for the
convenience of the reader.

Proof of the WBG theorem. As noted in Section 2, any polygonal region Ω can be tri-
angulated, and we claim that any triangle of area a is dissection equivalent to a 1-by-a
rectangle. If so, then stacking the rectangles corresponding to the elements of a trian-
gulation of Ω, shows that Ω is dissection equivalent to 1-by-A rectangle, where A is
the area of Ω. By Lemma 2, the WBG theorem follows from the claim.

The proof that a triangle of area a is dissection equivalent to a 1-by-a rectangle is
given in Figure 5 by a series of pictures (one also needs a little high school geometry
involving similar triangles). The topmost picture shows that any triangle is dissection
equivalent to some rectangle. Every triangle has at least two angles strictly less than
90◦ (since all three angles sum to 180◦), and we have chosen the horizontal edge
of the triangle in Figure 5 to be an edge between two such angles. This ensures the
opposite vertex projects vertically into this edge, as shown. The middle of Figure 5
shows that any rectangle is dissection equivalent to another rectangle with one side
twice as long and the other side half as long. Repeating this process, we can obtain a
rectangle with one side length s ∈ [1, 2], and the other side length t ∈ [a/2, a]. The
three-piece dissection at the bottom of Figure 5 shows this is equivalent to a 1 × a
rectangle, as desired.
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Figure 5. (1) A triangle is always dissection equivalent to some rectangle. (2) Any rectangle is
equivalent to another rectangle where one side is twice as long and the other side is half as long. (3)
A rectangle with side length 1 < s ≤ 2, is equivalent to one with side length exactly 1.

4. FLIPS AND SWAPS. In this section, given an equi-dissection of two polygonal
regions, we will define a space X and a mapping Φ : X → X . Informally, the space
X will consist of all the edges of all the pieces in both dissections, plus two additional
special points. Points that belong to the boundaries of exactly two adjacent pieces of
the same dissection are considered as two separate points of our spaceX , and the “flip
map” will exchange them. The flip map will send other points (e.g., exceptional points
and boundary points) to one of the two special points in X . The “swap map” will
take points in each dissection and map them to the corresponding points in the other
dissection. Composing the flip and swap maps will give a single map Φ : X → X ,
and this is the dynamical system we will study in the remainder of this paper.

As noted earlier, a dissection of Ω is a finite collection of closed polygonal sub-
regions with disjoint interiors and whose union is all of Ω. The boundaries of the
pieces can overlap, but to define the two maps discussed above, we would like to think
of these overlapping boundaries as distinct. We do this by considering the dissection
pieces as isometric images of polygons that are actually disjoint. This could lead to
some ambiguity about what a “piece” of a dissection is, but we will refer to the images
as “pieces” (the sub-regions of Ω) and to the corresponding disjoint polygons as the
“components”. An equi-dissection will consist of a single set of components and two
sets of isometries mapping them to the pieces of the two dissections. The rest of this
section makes these ideas precise.

Suppose P = {Pk}N1 is a finite collection of disjoint simple polygons. We let Rk

denote the compact region bounded by Pk, and setR = ∪N
1 Rk. A map F : R→ Ω is

a dissection of Ω with components {Rk}N1 and pieces {Qk}N1 = {F (Rk)}N1 if

1. F restricted to each Rk is an orientation preserving planar isometry,
2. the images Qk = F (Rk), k = 1, . . . , N have pairwise disjoint interiors,
3. and ∪N

1 Qk = Ω.

Let Vk denote the vertex set of Pk. For each k, the points of Ek = Pk \ Vk are
called the edge points of Pk (or the interior edge points, to be very precise). The
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connected components of Ek are the (open) edges of Pk. Define E = ∪N
1 Ek to be the

(disjoint) union of all the edge points. A segment I ⊂ E is called a boundary segment
if F (I) ⊂ ∂Ω. We define boundary points similarly. In a dissection F : R → Ω, an
interior edge point x ∈ E must be one of three possible types (see Figure 6).

1. Regular: F (x) an interior edge point of exactly two different dissection pieces.
2. Exceptional: F (x) an interior edge point of one piece and the vertex of one or

more other pieces.
3. Boundary: F (x) is an interior point of a boundary edge of Ω.

A triangular dissection is a triangulation if and only if no exceptional points occur.

b

x

v
v

Figure 6. The three types of edge points: x is regular, v’s are exceptional, and b is a boundary point.

We say two polygonal regions, Ω1 and Ω2, have an equi-dissection (or are dissec-
tion equivalent) if there are dissection maps F1 : R→ Ω1 and F2 : R→ Ω2 using the
same collection of components. The pair of maps F1 and F2 is then an equidissection
of the polygonal regions Ω1 and Ω2. Since F1 and F2, restricted to each component
of R, preserves orientation, these restrictions are compositions of rotations and trans-
lations. Even if we allowed reflections in the definition, dissection equivalent regions
would still have the same area, and hence they would be dissection equivalent in the
more restrictive “no-reflections” sense, by the WGB theorem (the proof in Section
3 only uses orientation preserving maps). Thus allowing reflections gives no greater
generality.

Suppose F1 : R → Ω1 and F2 : R → Ω2 form an equi-dissection of Ω1 and Ω2.
Let X = E1 t E2 ∪ {v} ∪ {b} consist of the disjoint union of two copies of E, plus
two special points: v (for vertex) and b (for boundary). We can restrict F1 to E1 to
define a map F1 : E1 → Ω1, and similarly for F2 : E2 → Ω2.

The swap map σ : X → X simply exchanges E1 and E2; each edge is mapped,
via the identity, to the corresponding edge in the other copy. We extend σ to the points
v and b as the identity: σ(v) = v and σ(b) = b. Clearly σ2 is just the identity, so σ is
an involution. (Here we let σ2 = σ ◦ σ and inductively define σn = σ ◦ σn−1 to be
the nth iterate of σ.)

Next we define the flip map φ : X → X . Each copy of E in X will be mapped
into the union of itself and the two special points v and b. Fix j ∈ {1, 2}. To define
φ(x) for an edge point x ∈ Ej , we consider three cases.

1. If x is regular, we set φ(x) = y if x and y belong to different components of
Ej but Fj(x) = Fj(y). Thus x 6= y = φ(x) are distinct in X but they have the
same image in Ωj . Clearly φ2(x) = φ(y) = x.

2. If x is exceptional, we set φ(x) = v.
3. If x is a boundary point, we set φ(x) = b.
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As with σ, define φ(v) = v and φ(b) = b. Let EV = φ−1(v) \ {v} ⊂ X denote the
set of exceptional points. For brevity, we use “exceptional orbit” to mean “the forward
orbit of an exceptional point”, i.e., {Φ(v),Φ2(v), . . . } for some v ∈ EV .

Unlike σ, the flip map φ sends intervals of regular points from each copy ofE ⊂ X
into the same copy, and it reverses their orientations. Like σ, the dynamics of φ by
itself are simple, since each regular point x satisfies x = φ2(x), and every other point
satisfies either φ2(x) = φ(x) = v or φ2(x) = φ(x) = b.

However, things become more interesting when we combine the flip map with the
swap map. Define Φ = φ ◦ σ : X → X . Then v and b are fixed by Φ and every other
point ofX has at most one preimage. If a forward orbit consists only of regular points,
then it either has infinitely many distinct points or it is periodic (it can not be strictly
pre-periodic since regular points have unique preimages). We record this observation
as a lemma for future use.

Lemma 3. Every forward orbit of a point either

1. is an infinite sequence of distinct regular values,
2. is a periodic orbit of regular points,
3. or eventually lands on either v or b

In particular, an exceptional orbit is finite if and only if it eventually lands on v or b.

If an orbit lands on v or b, then it stays there forever. Such an orbit is called “even-
tually fixed”, and this is the only kind of strictly pre-periodic orbit that can occur in
the dynamical systems we are considering. (Such points are also known as “absorbing
states” or “cemetery states”.) Since σ preserves orientations of edges and φ reverses
them, Φ also reverses orientation. For j = 1, 2, if Φn(Ej) ∩ Ej 6= ∅ then n is even,
so if an iterate of an interval under Φ intersects itself, then the orientations must be the
same. We will use this observation in the proof of Lemma 6.

5. SOME EXAMPLES OF FINITE ORBITS. Next, we examine a few simple ex-
amples to illustrate how Φ acts, and to show the various types of finite orbits. While
looking at specific examples, we will also make an observation that applies in general.

Figure 7 shows two regions, Ω1 and Ω2, equi-dissected by four triangles. In the
left-hand dissection, there is one exceptional point, labeled 1. An arrow is included to
show which component the point belongs to. (An exceptional point is only an interior
edge point of one component, so the arrow is not really needed, but it does make the
diagram easier to read, especially after iterating a few times.)

3 1 2

Figure 7. Φ maps the exceptional point 1 to 2, and then to 3 (which the special fixed point b).

The swap map σ moves a point from one dissection to the corresponding point in
the other dissection, and then the flip map φ reverses the direction of the arrow. Thus
Φ(1) = 2. The next application of Φ sends 2 to the point labeled 3, with an arrow
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pointed outside of Ω1; this is the point b ∈ X . The exceptional point on the right side
of Figure 7 (the black dot) also iterates to b in two steps.

Figures 8 and 9 both show two rectangles equi-dissected into six triangles. Fig-
ure 8 shows a periodic orbit of a regular point. Figure 9 shows an exceptional orbit:
1→ 2→ 3 = v. The second exceptional point also iterates to v. In general (but in-
formally), if an exceptional point x iterates to an exceptional point y, then y iterates to
x. More precisely, since φ2 = σ2 = Id on regular points, the following holds.

Lemma 4. If n ≥ 0 and if x and y = σ(Φn(x)) are both exceptional points, then
σ(Φn(y)) = x. Thus Φn+1(x) = φ(σ(Φn(x))) = φ(y) = v = Φn+1(y).

1

3 5

7

9

2

4

6

810

Figure 8. A periodic orbit of regular points of length 10.

23 1

Figure 9. There are two exceptional points. The point marked 1 is first mapped to the regular point
2, and then to 3, which is the other exceptional point. Thus the orbit ends at v ∈ X . Similarly, the
orbit of the exceptional point 3 also ends at v.

Figure 10 gives another equi-dissection (this time into rectangles), where there are
two exceptional points. In this case, the left-hand exceptional point iterates to the right-
hand one in eleven steps (and vice versa).We have chosen all edge lengths to be ratio-
nal, and the exceptional orbits can never hit the boundary, so they must eventually
reach v. Similar examples show that every interval exchange map on [0, 1] occurs
within the class of equi-dissections we are considering. There is an extensive theory of
such maps, e.g., [5], but we make no use of it here.

6. FINITE ORBITS GIVE TRIANGULATIONS. Suppose Ω1 and Ω2 are polyg-
onal regions that have a triangular equi-dissection. If the dissection of Ω1 is not a
triangulation, then there must be some exceptional vertices and, as noted in Section
2, we can refine the dissection to a triangulation by triangulating each component (in-
cluding any exceptional vertices on the component’s boundary). However, when we
map these new triangles forward by the swap map, we might create new exceptional
vertices in the dissection of Ω2. Again, we can refine the dissection to get a triangu-
lation of Ω2, but new exceptional points might appear in Ω1 when we apply the swap
map again. We will never obtain an equi-triangulation unless this “ping-pong” process
eventually stops creating new exceptional points.
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1 23 45 67 89 1011 12

Figure 10. An interval exchange map as a equi-dissection. In this example, all the edge length ratios
were chosen to be rational, and each of the two exceptional points iterates to the other one.

Lemma 5. Suppose we have an equi-dissection of polygonal regions Ω1 and Ω2. Then
every exceptional orbit is finite if and only if there is a equi-triangulation of Ω1 and
Ω2 that refines the given equi-dissection.

Proof. Suppose the exceptional orbits are all finite. Take all these orbit points as ver-
tices of the polygons in P and triangulate using exactly these vertices. Transferring
these triangulation to the dissections, we get triangulations of the dissection pieces so
that there are no exceptional vertices. Thus we have an equi-triangulation. Conversely,
if the equi-dissection has a refinement that is an equi-triangulation, then the orbits of
the exceptional points must lie among the vertices of the triangulation. This is a finite
set, and hence every exceptional orbit if finite.

We claim that all the exceptional orbits are finite if and only if the set of exceptional
points is contained in a finite Φ-invariant set Y , i.e., EV ⊂ Y ⊂ X and Φ(Y ) ⊂ Y .
To see this, note that if all the exceptional orbits are finite, then their union is such
a set Y . The converse is obvious. Note that it suffices to check that σ(Y ) ⊂ Y and
φ(Y ) ⊂ Y ; this formulation is how we will utilize Lemma 5.

7. HOW TO END AN INFINITE ORBIT. Next, we will study a specific example
with two infinite exceptional orbits, and we will modify the given dissections so that all
exceptional orbits become finite. In Sections 8 and 9, we will use this construction to
prove Theorem 1. The basic step will be to introduce two new triangular components
for each infinite orbit, and to replace some existing components by sub-regions where
we have removed triangular subsets to “make room” for the new components.

Figure 11 shows an equi-dissection of two rectangles F1 : R→ Ω1 and F2 : R→
Ω2 where R = R1 ∪R2 ∪R3 has three components: a small triangle, a large triangle
and a pentagon. Assume that the hypotenuse of the larger triangle has length 1, and
that the hypotenuse of the smaller triangle has length x < 1. If we identify the long
hypotenuse with the interval [0, 1], then the two exceptional points correspond to x and
1− x. The nth iterate of the first point is nx mod 1 for n ∈ N = {1, 2, . . . }, and
the iterates of the second point are −(n+ 1)x mod 1 for n ∈ N. If x is irrational,
then both these orbits are infinite. (Irrational rotations of the circle have infinite orbits:
if nx = mx mod 1 for some m > n, then x = k/(m− n) for some integer k, and
so xmust be rational. Indeed, such orbits are dense and even satisfy a stronger property
called Weyl equidistribution, but we will not need this fact.)

We will refine the given equi-dissection to obtain a new equi-dissection of the same
two rectangles in which all the exceptional orbits are finite. The process is described
in Figures 11 to 14. (These show the regions Ω1,Ω2, but by mentally separating the
pieces we can also think of these pictures as representing the space X .) Figure 11
shows the first nine iterates of the exceptional point labeled “1”. Note that iterate 9 lies
on a segment I whose endpoints are earlier iterates (1 and 3). Trapping exceptional
orbit points between nearby earlier iterates is a key feature of our method.
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Figure 11. Suppose the hypotenuse of the larger triangle has length 1, and the hypotenuse of the
smaller triangle has length x < 1. If x is irrational, the orbits of both exceptional points are infinite.
Here we show the first nine iterates of an exceptional point (the point labeled “1”).

α

β
4

6

8

A

A

B

B

Figure 12. This is the same as Figure 11, except that we have removed the numbers and arrows
to simplify the picture, and we have added two new triangular components; each is a right triangle
with hypotenuse length X . The images (under F1 and F2) of the first new component are labeled A
and the images of the second are labeled B. The large triangular component R2 and the pentagon R3

have been replaced by sub-components R′
2, R

′
3 that have six and eight sides respectively.

We start modifying the equi-dissection by adding two new triangular components
denoted A and B. See Figure 12, where the pieces F1(A) and F2(A) are labeled “A”
and the two images of B are labeled “B”. In the figure we show these components as
both being right triangles, but the exact shapes are not important. However, the two
new components must have the same shape as each other, and they must each have a
side J of length x. We define F1 on A so that J maps to the segment between 1 and 3
in Ω1, and so that F1(A) lies inside the large triangle, F1(R2). This is always possible
if A is shallow enough. Note that R2 is the component containing the point 9.

We modify the component R2, obtaining R′2, by removing a copy of A from the
indicated location. We then define F2 on B so that F2(B) “fills the gap” in F2(R

′
2),

and the side of length x in B maps to the segment between 2 and 4. (This is why A
and B must have the same shape.)

Next, we define F2 on component A, so that J maps into a boundary edge of
F2(R3), and so that F2(A) is contained in that piece. The choice of R3 here is ar-
bitrary, as is the location inside R3 (except that F2(J) must be on the boundary of
Ω2). As with R2, we remove a triangle from R3 to get R′3, in order to “make room”
for A. The image of point 9 under swapping is labeled α in Figure 12.

The choice of F2(A) forces the definition of F1(B), since both images have to fit
into the same triangular region cut out of R3. The maps F1 and F2 are restricted from
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R2, R3 toR′2, R
′
3 in the obvious way. The original three components have become five

components: three triangles (R1, A,B) and two polygons (R′2, R
′
3,) with six and eight

sides respectively.
Next we terminate the orbit of the second exceptional point, labeled β. This is easier

than the previous step, because β is already located between two suitable iterates, 4
and 6, of the first exceptional point. As shown in Figure 13, we add two more triangular
components, labeledC andD, with the same shape as each other (but again the precise
shape is unimportant and they can differ from A and ). Both C and D are chosen to
have a side I of length x, and we define F2(C) so that I maps to the segment between
4 and 6 in Ω2, with F2(C) lying inside F2(R

′
2) (i.e., R′2 is the modified triangular

component containing β). As before, we modify R′2 to make room for C, and call the
result R′′2 . Side I of D must be mapped by F1 to the segment between 3 and 5. The
image of F1(C) is arbitrary, except that side I of C must land in a boundary segment
of Ω1 and F1(C) is contained in some existing component (we choose R′3, but this is
arbitrary). We then define a new componentR′′3 ⊂ R′3 by removing a copy of C. Then
the definition of F2 on D is forced. The image of β under the swap map is labeled
γ. The final equi-dissection has seven components: five are triangles (R1, A,B,C,D)
and two are polygons (R′′2 , R

′′
3 ). that have eight and eleven edges respectively.

γ

α

β

4

6

8

C

DD
C

Figure 13. We can also terminate the second exceptional orbit. The second exceptional point is
already inside the segment between iterates 4 and 6 of the first exceptional point. We now have seven
components replacing the original three.

Finally, we must check that all exceptional orbits are finite. Define sets Yo ⊂ Ω1

and Ye ⊂ Ω2 as follows (“o” for odd and “e” for even): Yo is the set of points labeled
1, 3, 5, 7, 9, together with the point γ, and Ye corresponds to 2, 4, 6, 8 along with α
and β. Let Y = F−11 (Yo) ∪ F−12 (Ye) ∪ {v, b} ⊂ X . Since F1 and F2 are finite-to-
one maps, Y is a finite set. Indeed, each point can have at most two preimages. For
example, the point 1 has zero preimages since it is now a vertex of every piece it
belongs to. The point 2 is exceptional for the new equi-dissection and so it has only one
preimage, but 7 has two preimages since it is still regular for the new equi-dissection.

When we add a triangle component T in the construction above, one side I of T
either has both endpoints in Y , or both endpoints on a boundary edge. In the latter
case, the endpoints of I are boundary points, thus are not exceptional. The vertex of T
opposite I is a vertex of both new components that it belongs to, so does not create any
exceptional points either. Therefore any new exceptional points are in Y . Moreover,
φ(Y ) ⊂ Y since the flip map only exchanges points with the same image under F1 or
F2 and Y contains all preimages of a point if it contains any preimage. Also, σ(Y ) ⊂
Y since β swaps with γ, α swaps with 9, and preimages of other points with numerical
labels only swap with other such points. Thus EV ⊂ Y and Φ(Y ) ⊂ Y , and hence
all exceptional Φ-orbits are finite by the remark at the end of Section 6.

10 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 131



Mathematical Assoc. of America American Mathematical Monthly 131:1 November 8, 2025 7:25 p.m. equitri˙amm.tex page 11

4

6

8

Figure 14. Here we triangulate the dissection pieces from Figure 13. Note each dissection piece is
triangulated in exactly the same way in both dissections. Thus we have obtained an equi-triangulation
that refines the original equi-dissection.

By Lemma 5, the new equi-dissection has a refinement that is an equi-triangulation
of the two domains we started with. Figure 14 shows one such equi-triangulation. How
we triangulate the polygonal components R′′2 and R′′3 is not important (as long as no
vertices are added to their boundaries).

8. INFINITE ORBITS RECUR. In the previous section, we saw that an infinite
orbit of an exceptional point w can be terminated by modifying the dissection so that
some iterate of Φ maps w onto the point b ∈ X . This required two things to happen:
(1) the exceptional orbit had to land inside some interval I whose endpoints were
themselves earlier orbit points of exceptional vertices, and (2) I must be short enough
to be mapped into some boundary segment of the other dissection. As noted in Section
7, the placement of the boundary triangles is arbitrary, except for having to lie inside
existing dissection components and needing to be pairwise disjoint. Doing this for all
exceptional orbits requires that the total length of all the segments I used is so small
that the corresponding segments all fit disjointly on the boundaries of the dissected
regions. The following lemma says this is always possible.

Lemma 6. Suppose Ω1,Ω2 are polygonal regions with an equi-dissection, and let
Φ : X → X be the associated dynamical system described in Section 4. Suppose
that EV is the set of exceptional vertices, that v1 ∈ EV is an exceptional point, and
that this point has an infinite orbit consisting of distinct points v1, v2, v3, . . . . Let
EVk = EV ∪ {v2, . . . , vk}. Then given any ε > 0, there is a positive integer n and
an interval I on the boundary of some dissection piece so that

1. vn ∈ I
2. I has length < ε,
3. the endpoints of I are in EVn−1.

Proof. The basic idea is that an infinite sequence inside a finite set of bounded intervals
must get close to itself eventually; a consequence of the pigeonhole principle. The only
difficulty is that we need to find an orbit point vn that is sufficiently close to points of
EVn−1 on both sides on vn. We will assume this fails and derive a contradiction.

To start, note that there must be a pair of indices, m < n, so that vm and vn are on
the same edge of the same dissection component, and are within ε of each other; other-
wise some edge contains infinitely many orbit points all ε apart, which is impossible.

Let J be the closed segment connecting vm and vn, oriented to go from vm to vn.
Replacing vm by another point of EVn−1, if necessary, we may assume vm is the only
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point of EVn−1 in J . Now iterate J forward one step to get an interval J ′ of the same
length with endpoints vm+1 and vn+1. J ′ is not on the boundary of Ω1 or Ω2, for then
vn would be on the boundary too, giving a finite orbit, contrary to our assumption.

If J ′ contains an exceptional vertex w, then w must be an interior point of J ′, since
the orbit {vk} never hits an exceptional vertex other than v1 (if it did, by Lemma 4 the
orbit would be finite). We then replace J ′ by the sub-segment betweenw and vn+1. We
then iterate this new interval forward. At each stage, we either get an image interval of
the same length which can then be iterated again, or we encounter another exceptional
vertex as an interior point.

We claim we never encounter the same exceptional vertex twice, so this “segment
shortening” step only happens finitely often. If we ever encounter an exceptional vertex
w twice, say at vn+k and at vn+j with j > k, then vn+j is strictly closer tow than vn+k

was, since the interval being iterated has length at most |w − vn+k| after encountering
w the first time. If vn+j is between w and vn+k, then our orbit has landed inside an
interval of length< εwith endpoints inEVn+j−1. But we assumed this never happens.
Thus w must separate vn+j and vn+k. But then the orientation of the image of J has
changed, which is not possible by our remark at the end of Section 4. This proves the
claim that each exceptional point is encountered at most once.

Thus the iterated interval is only shortened finitely often, and eventually the lengths
stay fixed forever. Hence there are two such iterates that overlap. The overlap cannot be
the entire interval, for then the endpoints agree and we would get a period orbit, which
is impossible for exceptional points. Thus both intervals have some length δ > 0 and
one is equal to the other shifted by some η < δ. If the iterates are M steps apart in the
orbit, then taking another M steps gives a third interval that is a η-shift of the second
interval and in the same direction, i.e., it is 2η-shift of the first interval. But since the
forward iterates never hit the boundary or an exceptional point, this process can be
continued forever. Thus there is an edge of the equi-dissection that contains infinitely
many η-shifts of a fixed point, a clear contradiction, proving the lemma.

9. PROOF OF THEOREM 1.

Proof. Suppose we are given an equi-dissection of polygonal regions Ω1 and Ω2. Each
has at least one boundary edge and so we can choose δ > 0 so that each dissection has
a piece that contains a square with side length δ, so that one side of this square lies
along the boundary of the region being dissected. LetM be the number of exceptional
vertices in the equi-dissection and choose a positive ε < δ/4M .

If there are exceptional vertices with infinite orbits, choose one, say v, and for the
ε chosen above, select an integer nv so that its orbit v = w1, . . . , wnv satisfies the
conclusion of Lemma 6. We modify the equi-dissection by inserting two triangular
components that terminate the orbit of v by mapping wnv to a boundary point, as
described in Section 7. The boundary images of these new components may be placed
on adjacent intervals inside the δ-boxes chosen above. As in Section 7, the new orbit of
v will be finite and no new infinite orbits are created (although new exceptional points
with finite orbits may be created). If any exceptional points with infinite orbits remain,
we repeat the construction, and continue to do so until no infinite exceptional orbits
remain. Then we are done by Lemma 5.

10. QUESTIONS AND REMARKS. Dissections and equi-dissections have been
the source of many problems in recreational mathematics, often involving the mini-
mal number of pieces needed to decompose a polygon into shapes of a certain type, or
needed to equi-decompose two given polygons. Numerous references related to dis-
sections and equi-dissections using the least number of pieces are given in [6].
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Can we bound the number of triangles needed in our argument in terms of the
number and side lengths of the given dissection pieces? Is computing the minimum
number of polygons needed in an equi-dissection of two polygonal regions NP-hard?
Triangular dissections? Equi-triangulations? Upper and lower bounds for the equi-
dissection problem have been given in terms of the geometry of the polygons, and in
various special cases, e.g., by Alfred Tarski [11].

In a hinged dissection, pieces are “connected” at vertices and can only move by
rotations around these vertices that avoid self-intersection of the pieces, e.g., see [12]
and Figure 15. Any pair of equal area polygons has a hinged equi-dissection by [13],
but do they always have a hinged equi-triangulation?

Figure 15. This equi-dissection of a triangle and a rectangle is hinged. It becomes a hinged equi-
triangulation by triangulating the trapezoid piece appropriately. What happens in general?

Yuri Burago and Victor Zalgaller [7] proved that every polygon has an acute tri-
angulation (all angles < 90◦). Even more, every dissection of a polygon has a refine-
ment that is an acute triangulation. See [8], [9], and [10]. Thus any two equal area
polygons have an equi-dissection in which every element is an acute triangle. Using
the result in this paper (and other arguments) one can prove they also have an acute
equi-triangulation.

We ended infinite orbits by mapping some exceptional points to the boundary. What
if there is no boundary? Do two closed polygonal surfaces of the same area have an
equi-triangulation? Two such surfaces have an equi-dissection; the proof of the Wal-
lace–Bolyai–Gerwien theorem still applies. Can we modify our construction so that
pairs of exceptional orbits collide with each other? Is the number of exceptional points
in a equi-dissection of two closed surfaces always even?

Two sets are called equi-decomposable if they can each be written as a finite union
of disjoint subsets, where the sub-pieces of one decomposition can be rotated and
translated to give the pieces of the other decomposition. The Banach-Tarski theorem
[14] says that two planar polygonal regions are equi-decomposable if and only if they
are equi-dissectable if and only if they have equal area. This fails in higher dimensions:
the famous Banach-Tarski paradox says that a unit cube in R3 is equi-decomposable
with the union of two disjoint unit cubes. This decomposition depends on the Axiom
of Choice and the pieces are “non-constructible” in a precise sense. See [15], [16].

The 3-dimensional version of the Wallace–Bolyai–Gerwien theorem is better
known as Hilbert’s third problem: do any two polyhedra of equal volume have equi-
dissections into polyhedral pieces? In 1900, Max Dehn [17] showed this is false, and
that equi-dissectable polyhedra must have the same value of what we now call the
“Dehn invariant”, a certain tensor defined using the edge lengths and dihedral angles
(angles between adjacent faces). For example, the unit cube and a regular tetrahe-
dron of volume 1 have different values of the Dehn invariant, so they do not have
an equi-dissection. That equal volumes and equal Dehn invariants are sufficient for a
equi-dissection to exist was proven in 1965 by Jean-Pierre Sydler. See [19], [18]. In
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[20], Johan Dupont and Han Sah show that Sydler’s intricate geometric argument can
be replaced by a purely algebraic proof involving the homology of SO(3,R).

By Sydler’s theorem, any two polyhedra with the same volume and same Dehn
invariant have an equi-dissection into tetrahedra. Do they have an equi-triangulation
into tetrahedra, i.e., so that the simplex condition holds (adjacent pieces intersect in
vertices, edges or faces)? Is there an acute equi-triangulation (all angles between faces
are< π/2)? Finding an acute triangulation for a single polyhedron is already a difficult
task. Even for a cube in R3, acute triangulations were only constructed fairly recently:
[21] uses 2715 tetrahedra via a conceptual argument, and [22] uses 1370 found by a
computer-assisted construction.

It is well known that Hilbert’s third problem was the first on his list to be solved,
but it is perhaps less well known that it was solved even before he stated it. Accord-
ing to [3], the problem was well known in the mathematical community, and in 1882
Władysław Kretkowski offered a prize of 500 French francs (about $10,000 today) for
its solution, and this was awarded by the Polish Academy of Arts and Sciences to a
28-year-old math teacher, Ludwig Birkenmajer. Although unpublished, his manuscript
was found by the authors of [3] in the Scientific Library of the Polish Academy of
Sciences. In 1881 Birkenmajer became a Privatdozent at Jagiellonian University, and
from 1897 until his death in 1929, he held the Chair of the History of Exact Sciences
there. Birkenmajer was active in number theory, geophysics, astronomy, and the his-
tory of science, but never seems to have claimed credit for solving Hilbert’s problem
before Dehn. The prize sponsor, Kretkowski, published more than twenty mathemati-
cal papers, but as a wealthy nobleman, he made his greatest impact by supporting other
mathematicians with prizes and scholarships during his life, and bequeathing his en-
tire estate for the development of mathematics, on his death in 1910. See [3] for more
details and references.
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