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On the shapes of rational lemniscates. (English. English summary)
Geom. Funct. Anal. 35 (2025), no. 2, 359—407.
This paper deals with the shapes of rational lemniscates. A rational lemniscate is a level
set of the form
Ly(c):={ze€C:|r(z)| = ¢},

where 0 < ¢ < o0, C is the Riemann sphere and r is a rational map. After rescaling
if necessary, we may take ¢ =1, and write L, := L,(1). The topology of rational
lemniscates is described using the notion of lemniscate graph, which is a set G C C so
that there is a finite set V C G called the vertices of G such that

(1) G\ 'V has finitely many components (these are called the edges of G), each of
which is either a (closed) Jordan curve, or else a (open) simple arc v satisfying 7\
yCV;

(2) the degree of each vertex is even and at least four, where the degree of a vertex v
is defined as the number of edges 7 satisfying v € 7\ v, and we count an edge ~y
twice if {v} =7\ 1.

It is not difficult to prove that every rational lemniscate is a lemniscate graph. The
main result of the paper under review states on the other hand that every lemniscate
graph can be approximated in a strong sense by a rational lemniscate. More precisely,
if G is a lemniscate graph, then for every e >0 there exists a rational map r and a
homeomorphism ¢: C — C such that ¢(G) = L, and sup, @ d(p(z),z) < e, where d(-, )
denotes the spherical metric on C. One can also prescribe the poles of r in some precise
sense. This generalizes the classical Hilbert lemniscate theorem.

As shown in the paper, the fact that every lemniscate graph can be approximated by
a rational lemniscate has important consequences, such as a sharp quantitative version
of the classical Runge theorem on rational approximation as well as a generalization
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of a result from [K. A. Lindsey and M. Younsi, Trans. Amer. Math. Soc. 371 (2019),
no. 12, 8489-8511; MR3955554] on the approximation of planar continua by Julia sets
of rational maps.

This is a very nice paper on a fundamental topic, and the results should be interesting
to a broad range of complex analysts. Malik Younsi
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In the paper under review, the author studies discrete subsets of the hyperbolic disk
that are homogeneous with respect to uniformly bi-Lipschitz self-mappings of the disk.
To state this more formally, let K > 1 and € > 0. A discrete set X C D is an e-net if
every point of D is within hyperbolic distance € of X, and X is a (K, &)-net if it is
an e-net that is homogeneous with respect to a collection (not necessarily a group) of
K-bi-Lipschitz self-mappings of D. The author then defines

e(K) :=inf{e: (K, e)-nets exist}.
After explaining why e(K) < oo for all K > 1, the author proceeds to define
K. :=inf{K :¢(K)=0} =sup{K : e(K) > 0}.

The main result of the paper under review (Theorem 1.1) is that 1 < K. < co. The
author explains that £(1) > 0 due to well-known results of Kazhdan and Margulis
pertaining to Fuchsian groups, and attributes the question of whether or not K. > 1 to
Itai Benjamini.

To prove K. > 1, the author argues by contradiction, assuming there exist sets
{X,} and sequences K, — 1, &, = 0 such that each X, is a (K, &,)-net. Under this
assumption, he demonstrates that, for large n, the local structure of X,, is incompatible
with the global exponential growth of hyperbolic area in D.

To prove K. < oo, given any € > 0, the author constructs a (K, ¢)-net in D for some
K < oo independent of . These (K,¢)-nets are obtained as refined tessellations of D
by right pentagons (as constructed in [C. J. Bishop, Discrete Comput. Geom. 44 (2010),
no. 2, 308-329; MR2671014]). David Matthew Freeman
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A geometric approach to polynomial and rational approximation. (English.

English summary)

Int. Math. Res. Not. IMRN 2024, no. 12, 9936-9961.

In the paper under review, the authors revisit classic approximation theorems of analytic

functions defined on domains of the Riemann sphere by polynomials or rational functions

that they improve by controlling the locus of critical points and critical values (and

poles). These include Runge’s theorem, as well as Mergelyan and Weierstrass’ theorems.
These approximations are constructed using the method of quasiconformal foldings

that is based on first extending the given map by a quasiregular mapping before

straightening it thanks to the measurable Riemann mapping theorem. The starting

point is the approximation by proper mappings provided by Grunsky. One of the issues

of this approach is to obtain a good control of the distortion of the quasiregular extension

that will ensure the proximity of the rational function with prescribed data that is

constructed. Further geometric properties of these approximations may be achieved by

suitable choices made during the construction. Peter Haissinsky
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Equilateral triangulations and the postcritical dynamics of meromorphic
functions. (English. English summary)

Math. Ann. 387 (2023), no.3-4, 1777-1818.

The paper under review studies post-critical dynamics of meromorphic functions. Let
f:D — C be holomorphic. One can study iterative behaviours of f, and the global
dynamics depends in a sense on the dynamics of its singular values. By a singular value
is meant a critical or asymptotic value. Then the post-singular set is defined as the
closure of the forward orbits of all singular values. The paper is concerned with the
following question: For which set S C D and which function ¢: S — S can one find a
holomorphic function f: D — C such that the post-singular dynamics is conjugate to ¢7

The authors give a partial answer to the above question when S is discrete with at least
three points and when the conjugacy is replaced by e-conjugacy (a notion introduced in
the paper; see Definition 1.1). Similar results were previously obtained by C. J. Bishop
and K. Y. Lazebnik [Math. Ann. 375 (2019), no. 3-4, 1761-1782; MR4023391] and by
L. G. DeMarco, S. C. Koch and C. T. McMullen [Math. Ann. 377 (2020), no. 1-2, 1-18;
MR4099617].

The proof of the result relies on the use of quasiconformal mappings and equilat-
eral triangulation of Riemann surfaces. The latter is related to the existence of Belyi
functions, which is classical when the surface is compact and was obtained recently by
Bishop and Rempe when the surface is non-compact. To prove their result, the authors
need additional information on the diameter of the triangles in the equilateral triangu-
lation (Theorem B). Weiwei Cui

[References for MR4657437]

1. Ahlfors, L.V.: Lectures on Quasiconformal Mappings, Volume 38 of University Lec-
ture Series, 2nd edn. American Mathematical Society, Providence (2006).. (With
supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hub-
bard) MR2241787

2. Baranski, K.: On realizability of branched coverings of the sphere. Topol. Appl.
116(3), 279291 (2001) MR1857667

3. Bergweiler, W.: Iteration of meromorphic functions. Bull. Am. Math. Soc. (N.S.)
29(2), 151-188 (1993) MR1216719

4. Bishop, C.J.: True trees are dense. Invent. Math. 197(2), 433-452 (2014) MR3232011

5. Bishop, C.J., Lazebnik, K.: Prescribing the postsingular dynamics of meromorphic
functions. Math. Ann. 375(3-4), 1761-1782 (2019) MR4023391

6. Bishop, C.J., Rempe, L.: Non-compact Riemann surfaces are equilaterally triangu-
lable. arXiv:2103.16702 (arXiv e-prints) (2021)

7. DeMarco, L.G., Koch, S.C., McMullen, C.T.: On the postcritical set of a rational
map. Math. Ann. 377(1-2), 1-18 (2020) MR4099617

8. Epstein, D.B.A., Marden, A., Markovic, V.: Quasiconformal homeomorphisms and
the convex hull boundary. Ann. Math. (2) 159(1), 305-336 (2004) MR2052356

9. Garnett, J., Marshall, D.: Harmonic Measure, New Mathematical Monographs, vol.
2. Cambridge University Press, Cambridge (2005) MR2150803

10. Lazebnik, K.: Oscillating wandering domains for functions with escaping singular
values. J. Lond. Math. Soc. (2) 103(4), 1643-1665 (2021) MR4273483

11. Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane, 2nd edn. Springer,
New York (1973).. (Translated from the German by K, p. 126. W. Lucas, Die



Results from MathSciNet: Mathematical Reviews on the Web
(© Copyright American Mathematical Society 2026

Grundlehren der mathematischen Wissenschaften, Band) MR0344463

12. Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and Their Applications, Volume
141 of Encyclopaedia of Mathematical Sciences. Springer, Berlin (2004) MR2036721

13. MacManus, P.: Bi-Lipschitz extensions in the plane. J. Anal. Math. 66, 85-115
(1995) MR1370347

14. Milnor, J.: Dynamics in One Complex Variable, Volume 160 of Annals of Mathe-
matics Studies, 3rd edn. Princeton University Press, Princeton (2006) MR2193309

15. Marti-Pete, D., Shishikura, M.: Wandering domains for entire functions of finite
order in the Eremenko-Lyubich class. Proc. Lond. Math. Soc. (3) 120(2), 155-191
(2020) MR4008367

16. Nicks, D.A., Sixsmith, D.J.: Which sequences are orbits? Anal. Math. Phys. 11(2),
14 (2021) MR4216362

17. Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathe-
matics, 2nd edn. McGraw-Hill Inc, New York (1991) MR1157815

18. Tukia, P.: Extension of quasisymmetric and Lipschitz embeddings of the real line
into the plane. Ann. Acad. Sci. Fenn. Ser. A T Math. 6(1), 89-94 (1981) MR0639966

19. Voevodskii, V.A., Shabat, G.B.: Equilateral triangulations of Riemann surfaces, and
curves over algebraic number fields. Dokl. Akad. Nauk SSSR 304(2), 265-268 (1989)
MR0988486

Note: This list reflects references listed in the original paper as accurately as possible
with no attempt to correct errors.

MR4693957 30D05 30D30 37F10

Bishop, Christopher J. (1-SUNYS-NDM); Lazebnik, Kirill (1-NTXS-NDM);
Urbarniski, Mariusz (1-NTXS-NDM)

Correction to: Equilateral triangulations and the postcritical dynamics of
meromorphic functions. (English. English summary)

Math. Ann. 388 (2024), no. 1, 1117.

MR4670369 52B70 52B55 68U05

Bishop, Christopher J. (1-SUNYS)

Uniformly acute triangulations of polygons. (English. English summary)

Discrete Comput. Geom. 70 (2023), no. 4, 1571-1592.

The primary result of this paper is to establish the existence of triangulations with angles
between 30 and 75 degrees for polygons without an interior angle less than 30 degrees.
It largely builds off the author’s previous work [“Optimal triangulation of polygons”,
preprint, 2021; revised 2023, 2025]. Despite the wider angle range this does represent an
improvement on his earlier result, due to the tighter restriction on what happens when
a polygon has an interior angle of less than 30 degrees. Unlike “Optimal triangulation of
polygons”, where proof relies on a conformal mapping of the original polygon’s interior
to another polygon, here the interior of the original polygon is mapped to an unbounded
space with “infinite ends” corresponding to each of the original vertices. The bulk of
the text is spent establishing an appropriate triangulation of this space. A working
understanding of the author’s previous methods and results is beneficial for a thorough
understanding of what is presented here. Lindsay C. Piechnik
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Uniformly acute triangulations of PSLGs. (English. English summary)

Discrete Comput. Geom. 70 (2023), no. 3, 1090-1120.

Summary: “We show that any PSLG I" has an acute conforming triangulation 7" with an
upper angle bound that is strictly less than 90° and that depends only on the minimal
angle occurring in I'. In fact, all angles are inside [0y, 90° — 0y /2] for some fixed 6y >
0 independent of T', except for triangles T’ containing a vertex v of I' where I' has an

interior angle 6, < 6p; then 7" is an isosceles triangle with angles in the sharpest possible
interval [6,,,90° — 6,,/2].”
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Bishop, Christopher J. (1-SUNYS)

Function theoretic characterizations of Weil-Petersson curves. (English. English
summary)

Rev. Mat. Iberoam. 38 (2022), no. 7, 2355-2384.

The paper under review studies the class of Weil-Petersson curves, that is, the closure
of the closed smooth curves in the Weil-Petersson metric on universal Teichmiiller space
as introduced by L. A. Takhtajan and L.-P. Teo [Mem. Amer. Math. Soc. 183 (2006),
no. 861, viii+119 pp.; MR2251887]. The author of the current paper has already, in a
preprint [“Weil-Petersson curves, conformal energies, S-numbers, and minimal surfaces”,
2020] at the time of writing this review, collated 20 (!) different characterizations on
Weil-Petersson curves.

Here, the author collects seven characterizations of Weil-Petersson curves, some of
which are new and some of which were previously known, but new proofs are provided.
To highlight just one of these, a characterization is given in terms of P. W. Jones’
B-numbers used in the proof of the analyst’s traveling salesman problem [Invent. Math.
102 (1990), no. 1, 1-15; MR1069238]. Jones proved that the length of a curve I' can
be approximated by diam(T") + > Br(Q)?diam(Q), where the sum is over all dyadic
cubes. In this paper, it is proved that I' is a Weil-Petersson curve if and only if
3 Br(Q)? is finite, showing that Weil-Petersson curves have a particularly strong form
of rectifiability. Alastair N. Fletcher
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Quasiconformal maps with thin dilatations. (English. English summary)
Publ. Mat. 66 (2022), no.2, 715-727.
A quasiconformal mapping (homeomorphism) F:C — C can be regarded as a solution
of the Beltrami equation

oF  OF

oz Moz
where i is a complex-valued measurable function on C that satisfies ||u|lcoc < 1. Such
a y is called the complex dilatation of F'. In the paper under review, the author gives
some estimates of normalized quasiconformal mappings when the set

Ei={zeC|u(z) £ 0}
has small area. More precisely, the author assumes that the set E is (¢, h)-thin, that is,
€ >0 and

area(END(z,1)) <eh(|z])

for any z € C, where D(z,1) = {w € C| |w— z| < 1} and h: [0, 00) — [0, 7] is a bounded
decreasing function with

/ h(r)r™dr < oo
0

for every n > 1.

If F is a bounded set, then F' is conformal near oo and we can normalize F' such
that |F(z) —z| = O(1/z) as |z| — oo by composing a complex affine mapping. Then the
author shows that for all z € C,

B
|z] +1

for some 5 > 0 depending only on |u|lec and h (Theorem 1.1). This implies that F
converges uniformly to the identity on the whole plane when € — 0.

If E happens to be unbounded, we can normalize F' so that F'(0) =0 and F(1) =1 by
composing with another complex affine mapping. Then the author shows that for all z
and w € C,

|F(2) — 2| =

(1-C?)|z—w|—Ce® <|f(2) = f(w)| < (1+CP)|z —w|+ Ce?

for some C, > 0 depending only on ||u||s and h (Corollary 1.2). This result was
previously used in [N. Fagella, S. Godillon and X. Jarque, J. Math. Anal. Appl. 429
(2015), no. 1, 478-496; MR3339086] to construct wandering domains of transcendental
entire functions. Tomoki Kawahira

[References]

1. L. V. AHLFORS, “Lectures on Quasiconformal Mappings”, Second edition, With
supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard,
University Lecture Series 38, American Mathematical Society, Providence, RI, 2006.
DOI: 10.1090/ulect/038. MR2241787

2. S. ALBRECHT AND C. J. BISHOP, Speiser class Julia sets with dimension near one, J.
Anal. Math. 141(1) (2020), 49-98. DOT: 10.1007/s11854-020-0128-1. MR4174037



Results from MathSciNet: Mathematical Reviews on the Web
(© Copyright American Mathematical Society 2026

3. C. J. BisHop, Constructing entire functions by quasiconformal folding Acta Math.
214(1) (2015), 1-60. DOI: 10.1007/s11511-015-0122-0. MR3316755

4. C. J. BisHopr AND K. LAZEBNIK, Prescribing the postsingular dynamics of mero-
morphic functions, Math. Ann. 375(3-4) (2019), 1761-1782. DOI: 10.1007/s00208-
019-01869-6. MR4023391

5. C. J. BisHor AND L. REMPE, Non-compact Riemann surfaces are equilaterally
triangulable, Preprint (2021). arXiv:2103.16702v2.

6. E. M. DYN’KIN, Smoothness of a quasiconformal mapping at a point (Russian)
Algebra i Analiz 9(3) (1997), 205-210; translation in St. Petersburg Math. J. 9(3)
(1998), 601-605. MR1466801

7. N. FAGELLA, S. GODILLON, AND X. JARQUE, Wandering domains for compo-
sition of entire functions, J. Math. Anal. Appl. 429(1) (2015), 478-496. DOI:
10.1016/j. jmaa.2015.04.020. MR3339086

8. N. FAGeELLA, X. JARQUE, AND K. LAZEBNIK, Univalent wandering domains
in the Eremenko—Lyubich class, J. Anal. Math. 139(1) (2019), 369-395. DOI:
10.1007/811854-027-0079-x. MR4041106

9. A. A. GOLDBERG AND I. V. OsTrROVSKII, “Value Distribution of Meromorphic
Functions”, Translated from the 1970 Russian original by Mikhail Ostrovskii, With
an appendix by Alexandre Eremenko and James K. Langley, Translations of Math-
ematical Monographs 236, American Mathematical Society, Providence, RI, 2008.
DOI: 10.1090/mmono/236. MR2435270

10. K. LAZEBNIK, Several constructions in the Eremenko—Lyubich class J. Math. Anal.
Appl. 448(1) (2017), 611-632. DOI: 10.1016/j.jmaa.2016.11.007. MR3579902

11. J. W. OSBORNE AND D. J. SixsMITH, On the set where the iterates of an entire
function are neither escaping nor bounded, Ann. Acad. Sci. Fenn. Math. 41(2)
(2016), 561-578. DOI: 10.5186/aasfm.2016.4134. MR3525384

12. L. REMPE-GILLEN, Arc-like continua, Julia sets of entire functions, and Eremenko’s
Conjecture, Preprint (2016). arXiv:1610.06278.

13. O. TEICHMULLER, Eine Umkehrung des zweiten Hauptsatzes der
Wertverteilungslehre Deutsche Math. 2 (1937), 96-107.

14. H. WITTICH, Zum Beweis eines Satzes iiber quasikonforme Abbildungen Math. Z.
51 (1948), 278-288. DOI: 10.1007/BF01181593. MR0027057

15. Y. ZHANG AND G. ZHANG, Constructing entire functions with non-locally connected
Julia set by quasiconformal surgery, Sci. China Math. 61(9) (2018), 1637-1646. DOI:
10.1007/811425-017-93330-0. MR.3845329

Note: This list reflects references listed in the original paper as accurately as possible
with no attempt to correct errors.

MR4420442 28A75 26B15 30L05 42C99 49Q15 90C27

Bishop, Christopher J. (1-SUNYS)

The traveling salesman theorem for Jordan curves. (English. English summary)

Adv. Math. 404 (2022), part A, Paper No. 108443, 27 pp.

The main result of this paper sharpens the classical Analyst’s Traveling Salesman

Theorem for Jordan arcs in R™. As an application, the author provides new metric char-

acterizations for the n-dimensional analog of the Weil-Petersson class of planar curves.
The Analyst’s Traveling Salesman Theorem was first established by P. W. Jones

[Invent. Math. 102 (1990), no. 1, 1-15; MR1069238] and later extended by K. Okikiolu

to higher dimensions [J. London Math. Soc. (2) 46 (1992), no. 2, 336-348; MR1182488]

and by R. Schul to Hilbert spaces [J. Anal. Math. 103 (2007), 331-375; MR2373273].

This theorem provides an intrinsic and quantitative characterization for the collection

of sets which lie within rectifiable curves. To state the result precisely, we introduce the
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Jones 8 numbers. For a set £ C R™ and a dyadic cube @), set

Be(Q) = inf sup{dist(z, L) : z € 3Q N E},

1
diam(Q) L
where the infimum is taken over all lines L that intersect @, and 3() denotes the
cube concentric with @ whose diameter is equal to 3 diam(Q). The Analyst’s Traveling

Salesman Theorem states that for any given set £ C R", the shortest curve I' containing
E has length ¢(I') which satisfies

{(T) ~ diam(F) + Z B%(Q) diam(Q).

Here, the sum is taken over all dyadic cubes Q in R™, and the notation A ~ B means that
C~'A < B < CA for some universal constant C. Jones’ original proof was formulated
for n = 2; Okikiolu generalized this to general n with constant C' = C(n) and Schul’s
extension to Hilbert spaces showed (in particular) that the n-dimensional version holds
with constant C' independent of n.

The first main result of this paper can be formulated as follows: Let " be a Jordan
arc in R with endpoints x and y. Then

(1) diam(T Z BR(Q) diam(Q) < (I') < diam(T') + C Y _ 3(Q) diam(Q),
Q

and

o —y| - Zﬂ ) diam(Q) < ((T) < [z —y|+C > B7(Q) diam(Q),
Q

for some constant C' = C(n) > 0. This sharpening of the classical Analyst’s Traveling
Salesman Theorem has several intriguing consequences. For instance, the replacement
of diam(I") with the ‘chordal length’ |z — y| implies that, for closed Jordan curves I', the
length of I" is comparable to the S number sum (with no additional term).

The second main result of the paper characterizes the aforementioned class of closed
Jordan curves, i.e., the set of curves for which the corresponding 8 number sum (with-
out the diameter summand) remains finite. When n = 2, the class of closed curves so
obtained is the Weil-Petersson class, which arises in connection with string theory, pat-
tern recognition, quasiconformal mapping theory, and in the study of Schramm-Loewner
evolution. The n-dimensional analog of these curves features in Theorem 1.4 of the pa-
per, which asserts the following: For a closed Jordan curve I' in R", the following are
equivalent:

¢ Y0 BQ) < o
e ' is a chord-arc curve and, denoting by T',, the (polygonal) level m dyadic
decomposition of T', it holds true that ) ., 2™(¢(T") —¢(I',)) < oo;
e I has finite Mdbius energy, i.e., [i [p(Jz —y|72 —€(Ty,y)?) da dy < c.
Here, I';, , denotes the shorter of the two subarcs of I' connecting x to y.

To conclude this review, we briefly sketch the proof of the upper bound in (1).
Without loss of generality, assume that I' is bounded. The proof consists of an in-
ductive construction of a sequence of nested compact sets {I';, : m > 0} shrinking
down to I'. The first set I'g is the convex hull of I', while I';,, is a union of 2™ com-
pact, convex sets that cover I'. The constituent sets in I'), are obtained by splitting
each of the sets in I'j,,_1 into two pieces. The splitting operation is as follows: If R
is a compact, convex set, choose a suitable diameter I of R (i.e., a closed interval
I C R so that diam(I) = diam(R)), divide I into equal halves I; and I, and let Ry
and Ry (respectively) be the convex hulls of the subsets of RNT given by the preim-
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ages of I, and I, under orthogonal projection to the line through I. The key lemma
(Lemma 2.1) asserts the following: If a given compact set R is split into R; and Ry by
the above procedure, then diam(R;) + diam(Rz) < diam(R) + C8%(R) diam(R). Here,
B(R) = inf; sup, dist(z, I') /diam(R), where the supremum is over all € R and the
infimum is over all diameters I of R. By induction, it follows that

> diam(R)< Y diam(R)+C Y B*(R)diam(R) <
R:RCT 41 R:RCT',, R:RCT,,
diam(T") + C Z B?(R) diam(R),

R:RCT <.,

where I'c,p, ;=11 U---UI',. It is a standard fact of geometric measure theory that
the left-hand side converges to ¢(I') as m tends to infinity. Lemma 2.4 of the paper
asserts uniform boundedness for the number of such dyadic descendants of a fixed size
which meet a given ball of comparable size. This boundedness condition implies that
the sum on the right-hand side (over constituent elements in the mth level cumulative
approximant I'<,,) is bounded above by a constant—depending on the dimension n—
times the full Jones 8 number sum over all dyadic cubes. This completes the proof.
Jeremy T. Tyson
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Bishop, Christopher J. (1-SUNYS)

% Optimal angle bounds for Steiner triangulations of polygons. (English. English
summary)

Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 3127-3143, [Society for Industrial and Applied Mathematics (SIAM )],
Philadelphia, PA, 2022.

Summary: “For any simple polygon P we compute the optimal upper and lower angle
bounds for triangulating P with Steiner points, and show that these bounds can
be attained (except in one special case). The sharp angle bounds for an N-gon are
computable in time O(N), even though the number of triangles needed to attain these
bounds has no bound in terms of N alone. In general, the sharp upper and lower bounds
cannot both be attained by a single triangulation, although this does happen in some
cases. For example, we show that any polygon with minimal interior angle 6 has a
triangulation with all angles in the interval I = [#,90° — min(36°,6)/2], and for § <
36° both bounds are best possible. Surprisingly, we prove the optimal angle bounds for
polygonal triangulations are the same as for triangular dissections. The proof of this
verifies, in a stronger form, a 1984 conjecture of Gerver.”

MR4402047 30H10 28A75 30C20

Bishop, Christopher J. (1-SUNYS)

Conformal images of Carleson curves. (English. English summary)

Proc. Amer. Math. Soc. Ser. B 9 (2022), 90-94.

In the article under review the author provides a quite interesting characterization:
given a curve 7 in the unit disk, the arclength on « is a Carleson measure if, and only
if, the image of v under every conformal map onto a bounded domain with rectifiable
boundary has finite length.

One direction of this equivalence is quite standard (it is a consequence of the F. and M.
Riesz theorem), while the other direction is obtained through a non-trivial construction
of an explicit conformal mapping. The proof in fact provides much more than stated in
the main theorem: what the author really proves is that a positive measure p on the
disk is Carleson if, and only if, [} |f|du < oo for any conformal map f onto a rectifiable
domain.

The author takes care to motivate and explain his construction in detail, in order to
make the work of the reader as easy as possible; it is a clearly written article and should
be of interest to people working on conformal mappings, fractal geometry, geometric
function theory and related topics. Lucas da Silva Oliveira

[References]

1. John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol.
96, Academic Press, Inc. Harcourt Brace Jovanovich, Publishers|, New York-London,
1981. MR628971 MR0628971

2. John B. Garnett and Donald E. Marshall, Harmonic measure, New Mathematical
Monographs, vol. 2, Cambridge University Press, Cambridge, 2008. Reprint of the
2005 original. MR2450237 MR2450237

Note: This list reflects references listed in the original paper as accurately as possible
with no attempt to correct errors.



Results from MathSciNet: Mathematical Reviews on the Web
(© Copyright American Mathematical Society 2026

MRA4276301 28A78 52A20

Bishop, Christopher J. (1-SUNYS); Drillick, Hindy (1-CLMB);

Ntalampekos, Dimitrios (1-SUNYS-IM)

Falconer’s (K, d) distance set conjecture can fail for strictly convex sets K in R,
(English. English summary)

Rev. Mat. Iberoam. 37 (2021), no.5, 1953-1968.

Summary: “For any norm on R? with countably many extreme points, we prove that
there is a set £ C R? of Hausdorff dimension d whose distance set with respect to this
norm has zero linear measure. This was previously known only for norms associated
to certain finite polygons in R2. Similar examples exist for norms that are very well
approximated by polyhedral norms, including some examples where the unit ball is
strictly convex and has C! boundary.”
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Albrecht, Simon (4-LVRP); Bishop, Christopher J. (1-SUNYS)

Speiser class Julia sets with dimension near one. (English. English summary)

J. Anal. Math. 141 (2020), no. 1, 49-98.

Transcendental entire functions with a finite singular set (the closure of its critical
values and finite asymptotic values) form the Speiser class. The authors present a novel
construction of functions from this class with non-locally connected Cantor bouquet
Julia sets whose Hausdorff dimensions are arbitrarily close to 1. Such fractals were
known to have Hausdorff dimension greater than 1 by results of G. M. Stallard [Math.
Proc. Cambridge Philos. Soc. 119 (1996), no. 3, 513-536; MR1357062] and full packing
dimension by P. J. Rippon and Stallard [Ergodic Theory Dynam. Systems 26 (2006),
no. 2, 525-538; MR2218773].

The construction involves delicate handling of C. J. Bishop’s flexible quasiconformal
folding construction [Acta Math. 214 (2015), no. 1, 1-60; MR3316755] and several new
ideas to obtain control of the dimension. The examples constructed all have infinite
order of growth and are of disjoint type (they possess exactly three singular values
(0,—1,1) that are contained in the basin of attraction of the fixed point 0).

The ideas in this well-written and beautifully illustrated paper are deep yet clearly
visible from the surface. That said, this reviewer would like to have seen a more careful
proof demonstrating that the Julia sets constructed are in fact Cantor bouquets, but
the paper was almost at fifty pages before the proof sketch of this delicacy. The authors
believe that the dimensions of their Speiser Julia sets must be concentrated on the
endpoints of the hairs on the respective bouquets.

There exist a range of challenging open problems in the dimension theory of various
fractal phenomena arising from transcendental dynamics; one should follow the bur-
geoning literature closely. For instance, the authors state that it is open whether there
exist Speiser Julia sets of every dimension between 1 and 2, yet there already appears
to be recent progress by W. Bergweiler and W. Cui [“The Hausdorff dimension of Ju-
lia sets of meromorphic functions in the Speiser class”, preprint, arXiv:2105.00938]. The
2020 online conference On Geometric Complexity of Julia Sets—II, as well as its hybrid
follow-up in 2021, On Geometric Complexity of Julia Sets—III, delineates several allied
directions that await resolution at the time of writing. Tushar Das
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Anti-self-dual 4-manifolds, quasi-Fuchsian groups, and almost-Kahler geometry.

(English. English summary)

Comm. Anal. Geom. 28 (2020), no. 4, 745-780.

An anti-self-dual 4-manifold is an oriented Riemannian manifold of dimension 4, (M4, g),
such that W, = 0, where W, denotes the self-dual Weyl curvature, which is the
orthogonal projection of the Riemann curvature tensor R into the trace-free symmetric
square @g AT of the bundle of self-dual 2-forms.

An oriented Riemannian manifold (M, g) equipped with a closed 2-form w is said to be
almost-Kahler if there is an orientation compatible almost-complex structure J: TM —
TM, J* = —1, such that g = w(-,J-). If, in addition, J is integrable, then M is said
to be a Kihler manifold. A Kihler manifold (M*,g,.J) of complex dimension two is
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anti-self-dual if and only if its scalar curvature vanishes [C. R. LeBrun, in Proceedings
of the International Congress of Mathematicians, Vol. 1, 2 (Zirich, 1994), 498-507,
Birkhéauser, Basel, 1995; MR1403950].

The almost-Kéahler anti-self-dual metrics on a given 4-manifold sweep out an open
subset O in the moduli space of anti-self-dual metrics. Nevertheless, the authors present
examples of 4-manifolds that admit locally conformally flat conformal classes [g] that
cannot, be represented by almost-Kéhler metrics. Moreover, they infer that the subset
O is not closed in general, and so need not sweep out entire connected components of
the moduli space. Their construction uses quasi-Fuchsian groups.

The final part of the paper raises some interesting questions regarding the method
used, and possible further research on the subject. Mario A. Fioravanti
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Prescribing the postsingular dynamics of meromorphic functions. (English.
English summary)

Math. Ann. 375 (2019), no. 3-4, 1761-1782.

In the paper under review, the authors construct transcendental meromorphic functions
with prescribed dynamics on the postsingular set.

In more detail, let f:C — C be a meromorphic function, and let Sy be the set of
singular values of f. The set Py =J,~, fo"(Sy) is called the postsingular set f.

A sequence S C C is called discrete if S has no accumulation points in C. Denote by
|S| the number of elements in S. If |S| = oo, then the elements of S accumulate only at
0.

The main result of the paper is the following theorem:

Theorem 1. If S C C is a discrete sequence with 4 < |S| < 0o, and h: S — S is any
map, then for every € > 0 there exist a transcendental meromorphic function f:C — C
and a bijection ¢: S — Py such that

e h models the dynamics of f on the postsingular set, i.e., f|p, =1 oho P~
e 1) is an e-perturbation of S, i.e., [1)(s) — s| < e for every s € S;
e in the case |S| = oo, the map v is asymptotically the identity, i.e., [¢)(s) —s| = 0

as s — o0.
The proof is based on the quasiconformal folding technique introduced by C. J. Bishop
[Acta Math. 214 (2015), no. 1, 1-60; MR3316755]. Kostiantyn Drach
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 Harmonic measure: algorithms and applications. (English. English summary)
Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018.
Vol. I1I. Invited lectures, 1511-1537, World Sci. Publ., Hackensack, NJ, 2018.
This paper is a survey of various results related to harmonic measure in the complex
plane. The first part of the paper deals with the computational aspects of harmonic
measure and conformal maps, including applications to computational geometry. The
second part describes applications to the study of hyperbolic 3-manifolds and limit sets

of

Kleinian groups. The third part consists of a survey of results related to Makarov’s

law of iterated logarithm (LIL) and the connections among harmonic measure, random
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walks and Hausdorff dimension. This includes a discussion of results related to harmonic
measure and rectifiability as well as conformal welding. Finally, the last part of the paper
deals with applications of harmonic measure and the author’s quasiconformal folding
technique to the study of true trees and transcendental entire functions.

This is a very interesting and well-written survey from a renowned expert on harmonic
measure. Malik Younsi

MR3787831 37F10 30D05 37F35

Bishop, Christopher J. (1-SUNYS)

A transcendental Julia set of dimension 1. (English. English summary)

Invent. Math. 212 (2018), no. 2, 407-460.

The Julia set J(f) of an entire function f is the set where the family of iterates of
f fails to be normal. By a result of Baker, the Julia set of a transcendental entire
function contains continua and thus has Hausdorff dimension at least 1. A result
of C. T. McMullen says that J(Ae*) =2 for A # 0, and we have J(e*) = C by a
result of M. Misiurewicz. G. M. Stallard showed that for any d € (1,2) there exists a
transcendental entire function f such that J(f) has Hausdorff dimension d.

In the present paper the author completes the picture by constructing a transcen-
dental entire function f for which the Julia set has Hausdorff dimension 1. In fact,
HY(J(f)nD(x,r)) = O(r) for every z € C, where H'(-) denotes the one-dimensional
Hausdorff measure and D(x,r) is the disk of radius r centered at z. Moreover, J(f) has
packing dimension 1, and given any function 4 satisfying lim;_,, ¥ (¢)t ™™ = oo for every
n, one may choose f such that |f(z)| = O(¢(]z])) as |z| — oc.

The function constructed has multiply connected wandering domains. These are
domains Uy, containing annuli around 0 such that f(Uy) C Ugy1 and Uy — co. They are
constructed in such a way that the “outer” boundary of Uy coincides with the “inner”
boundary of Ugy1, and is a rectifiable Jordan curve. The Julia set consists of these
Jordan curves, together with their preimages and limit points thereof.

Walter Bergweiler
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Models for the Speiser class. (English. English summary)

Proc. Lond. Math. Soc. (3) 114 (2017), no.5, 765-797.

The Eremenko-Lyubich class, B, consists of those transcendental entire functions for
which the set of singular values, S(f), is bounded. The Speiser class, S C B, consists
of those functions for which S(f) is finite. These important classes have been widely
studied, particularly in complex dynamics. The paper under review is, with [C. J.
Bishop, Acta Math. 214 (2015), no. 1, 1-60; MR3316755] and [C. J. Bishop, J. Lond.
Math. Soc. (2) 92 (2015), no. 1, 202-221; MR3384512], one of a remarkable trilogy of
papers which together give new techniques to construct functions in these classes, as
well as answering a number of open questions.

Assume that f € B and R > 0 are such that S(f) C {2:|z] < R}. Then Q = f~1(W),
where W = {z:|z| > R}, is a disjoint union of analytic, unbounded, simply connected
domains (called tracts), and f is a covering map from each tract to W.

Roughly speaking, in [op. cit.; MR3384512] Bishop considered the reverse question:
Given a suitable set of tracts and covering maps (known as a model), is there a function
f € B which approximates the functions in the original model? This question is answered
in the affirmative, and the sense of the approximation is made precise.

In the present paper, Bishop answers the same question, but with the additional
restriction that f must lie in S. Once again, the answer is in the affirmative, although
the approximation is weaker than that possible in the class B. In particular, the function
f may have additional tracts which are not in the initial model.

The construction in [C. J. Bishop, op. cit.; MR3384512] uses a Blaschke product, and
is self-contained. The construction in the present paper is more complicated, and uses
the quasiconformal folding technique introduced in [C. J. Bishop, op. cit.; MR3316755].

David Jonathon Sizsmith
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* Fractals in probability and analysis.
Cambridge Studies in Advanced Mathematics, 162.
Cambridge University Press, Cambridge, 2017. i2+402 pp. ISBN 978-1-107-13411-9
This book provides an excellent, broad introduction to the study of fractals that arise
naturally in probability and analysis. As with many texts on fractals, it starts by setting
out the classical notions of dimension (i.e., Minkowski, Hausdorff, packing) and the
key basic techniques applied in their study, such as the mass distribution principle,
and Frostman’s theory and capacity. It then proceeds to introduce some of the well-
known, central examples of fractals, namely self-affine sets, the Weierstrass nowhere
differentiable function, and Brownian motion. Actually, the two introductory chapters
on Brownian motion are relatively extensive, incorporating not only basic definitions
and properties, such as nowhere differentiability and dimension, but also the deep
links between Brownian motion and potential theory, as well as conformal invariance.
Following this, the book goes on to cover more novel aspects of the subject, including the
relationship between capacity and the hitting probabilities of discrete Markov processes,
a discussion concerning Besicovitch-Kakeya sets, and a presentation of Jones’ Travelling
Salesman Theorem.

Being based on lecture series of the two authors, it is perhaps natural that the material
is at an appropriate level for a graduate (or possibly advanced undergraduate) course.
However, it is worth underlining that the text would serve this purpose extremely well.
Indeed, the writing is very clear, with a focus on exposition of the main ideas, rather
than the most advanced statements of results. Nonetheless, through this accessible
approach, it manages to touch on several avenues of active research. (In fact, the book
even provides some elegant, original proofs itself.) Moreover, all the main results are
illustrated with numerous examples, and the text includes several hundred exercises
at a range of difficulties, together with hints and solutions for a number of these. The
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historical notes are also richly informative.
Finally, T note that a list of typos/errors appears on the homepage of the first author.
David A. Croydon
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Quasisymmetric dimension distortion of Ahlfors regular subsets of a metric
space. (English. English summary)

Geom. Funct. Anal. 26 (2016), no. 2, 379-421.

Quasisymmetric maps are homeomorphisms between metric spaces that preserve relative
distances between points up to a multiplicative constant but nevertheless may distort
other geometric properties such as Hausdorff dimension or rectifiability of sets. A
standard illustration of this phenomenon is a quasisymmetric map f from the Euclidean
plane onto itself that maps the unit circle S* onto the Koch snowflake. On the other hand,
because every quasisymmetric map from the plane onto itself is also quasiconformal, the
image f(rS') of the circle of radius r about the origin is a rectifiable curve for Lebesgue
almost every r. Thus, while the map does increase the Hausdorff dimension of the
unit circle, the map simultaneously preserves the Hausdorff dimension and rectifiability
of generic circles about the origin. This leads us to a central question of the paper
under review: How frequently can a quasisymmetric map distort the dimension of sets?
The authors make an in-depth study of this question and give several novel, satisfying
answers.

A special case of one of the main results is that quasisymmetric self-maps of Euclidean
space preserve the Hausdorff dimension of almost every translate of an Ahlfors regular
set. More precisely, let n > 2 and let f: R™ — R" be a quasisymmetric map. The authors
prove that if E C R™ is a bounded, Ahlfors regular set of dimension d € (0,n] (that is,
the d-dimensional Hausdorff measure satisfies H¢(E N B(x,7)) ~ r¢ for all x € E and
0 < r < diam E), then the Hausdorff dimension of f(x + E) is d (the dimension of FE)
for Lebesgue almost every x. This result is classical when FE is a rectifiable curve, but
in this generality it is original even when F is a disconnected Ahlfors regular set of
dimension 1. Remarkably, the authors also prove that an analogous statement holds for
quasisymmetric self-maps of arbitrary Carnot groups of dimension at least 2.

The authors prove a number of other interesting results, the statements of a few
of which require B. Fuglede’s notion of modulus of measures from [Acta Math. 98
(1957), 171-219; MR0097720]. We refer the reader to the introduction of the paper for
a full account. One highlight is an extension of a theorem of Z. M. Balogh, R. Monti
and J. T. Tyson [J. Math. Pures Appl. (9) 99 (2013), no. 2, 125-149; MR3007840] on
the frequency of dimension distortion of leaves of a foliation in Euclidean space under
quasiconformal maps to product-type sets of arbitrary (non-integral) dimension. Bishop,
Hakobyan, and Williams also give a significant extension of a theorem of L. V. Kovalev
and J. Onninen [Studia Math. 195 (2009), no. 3, 257-274; MR2559176] by constructing
planar quasiconformal maps that send uncountably many (in fact, a set with Hausdorff
dimension arbitrarily close to 1 of) parallel line segments onto purely unrectifiable
curves.

The proofs of the main results in this paper ultimately involve a creative use of
Fuglede’s modulus of measures together with more common staples such as covering
theorems and Frostman’s lemma. They are essential reading for any mathematician
interested in contemporary geometric function theory. Matthew Badger
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Bishop, Christopher J. (1-SUNYS)

Nonobtuse triangulations of PSLGs. (English. English summary)

Discrete Comput. Geom. 56 (2016), no. 1, 43-92.

The article is devoted to constructing a conforming triangulation for a planar straight
line graph (PSLG) in the plane with prescribed conditions on the triangles. Let V' be
the set of vertices of the given PSLG I'. Then a conforming triangulation for I' is a
triangulation of a point set V' that contains ¥V and such that the union of the vertices
and edges of the triangulation covers I'. The main problem is to construct conforming
triangulations that use the minimum number of triangles and have good geometry.
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The author considers the problem of obtaining the best angle bounds on the triangles
that allow him to polynomially bound the number of triangles needed in terms of n,
the number of vertices of I'. Some results for this problem for particular cases of PSLGs
have been obtained by Y. D. Burago and V. A. Zalgaller [Vestnik Leningrad. Univ. 15
(1960), no. 7, 66-80; MR0116317], J. L. Gerver [Geom. Dedicata 16 (1984), no. 1, 93—
106; MR0O757798], and M. W. Bern and D. Eppstein [Internat. J. Comput. Geom. Appl. 2
(1992), no. 3, 241-255; MR1194449; errata, Internat. J. Comput. Geom. Appl. 2 (1992),
no. 4, 449-450; MR1202364].

The present author proves the following theorem:

Theorem 1. Every PSLG with n vertices has an O(n?%) conforming nonobtuse trian-
gulation.

Improving a bound of Bern and Eppstein [op. cit.], the author then obtains another
result:

Theorem 2. Any triangulation of a simple n-gon has an O(n?) nonobtuse refinement.

Moreover, the author can also approach the quadratic lower bound by considering
“almost nonobtuse” triangulations:

Theorem 3. Suppose 6 > 0. Every PSLG with n vertices has a conforming triangulation
with O(n?/6?) elements and all angles < 90° + 6.

As corollaries, the author obtains analogous results for Delaunay and Gabriel trian-
gulations.

The proofs are based on the properties of the mutual arrangement of circles and
polygons, and on the author’s idea of construction of special “P-paths” for PSLGs.

Viadimir Aleksandrovich Klyachin

MR3509030 68U05 52B55 68Q25

Bishop, Christopher J. (1-SUNYS)

Quadrilateral meshes for PSLGs. (English. English summary)
Discrete Comput. Geom. 56 (2016), no. 1, 1-42.

The main statement proved in the paper under review is:

Theorem 1.1. Every planar straight line graph with n vertices has a conforming
quadrilateral mesh with O(n?) elements, all angles < 120° and all new angles > 60°.
Both the complexity and the angle bounds are sharp. The mesh can be taken so that all
but O(n) vertices have degree four (Corollary 15.3).

This paper is of technical interest for researchers in discrete and computational
geometry. Jean-Charles Pinoli
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Bishop, Christopher J. (1-SUNYS)

The order conjecture fails in S. (English. English summary)

J. Anal. Math. 127 (2015), 283-302.

Let f be an entire function and S(f) denote the closure of its critical values and finite
asymptotic values. A. E. Eremenko and M. Yu. Lyubich [Ann. Inst. Fourier (Grenoble)
42 (1992), no. 4, 989-1020; MR1196102] introduced S, the class of entire functions for
which S(f) is a finite set and S,, is its subset having exactly n singular values. Entire
functions f and F' are termed equivalent if there exist quasiconformal maps ¢ and
¢ of the plane such that ¢ o f = F o ¢. Eremenko and Lyubich [op. cit.] proved that
for f €S, the set of functions equivalent to f forms an (n + 2)-complex-dimensional
manifold about which it was conjectured that the order was constant on each such
manifold. A. L. Epstein and L. Rempe-Gillen [Ann. Acad. Sci. Fenn. Math. 40 (2015),
no. 2, 573-599; MR3409693] showed the order conjecture to be true for n =2, but
Theorem 1.1 of the paper under review shows that there exist equivalent functions in S3
with different orders. Since Epstein and Rempe-Gillen [op. cit.] proved that if f has the
area property, then it also satisfies the order conjecture, Theorem 1.1 also shows that
the area property does not hold in §. A function f in S has the area property if

1
// Wdacdy< 00

fFHK)\D

whenever K is a compact subset of C~ S(f).

The intricate and highly creative proof of Theorem 1.1 proceeds by first describing how
to construct entire functions with exactly two critical values, and then modifying this
idea to give a function with three critical values. The carefully written paper includes
an illuminating introduction and a number of diagrams helpful in understanding the
construction of the needed function. L. R. Sons
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Dynamical dessins are dense. (English. English summary)

Rev. Mat. Iberoam. 31 (2015), no. 3, 1033-1040.

In this work the authors successfully apply a result of the first author [cf. Invent. Math.
197 (2014), no. 2, 433-452; MR3232011] to the problem of approximating a continuum
in the complex plane in the Hausdorff topology by the Julia set of a postcritically finite
polynomial (with two postcritical points) in a specific family.

In [K. M. Pilgrim, Ann. Sci. Ecole Norm. Sup. (4) 33 (2000), no. 5, 671-693;
MR1834499], a Belyi polynomial g, i.e., a non-linear polynomial whose critical values
are contained in {0,1}, is called an XDBP (extra-clean dynamical Belyi polynomial)
if its postcritical set agrees with {0,1} and further satisfies g(0) = g(1) =1 and
¢'(0), 4'(1) £0.

The main approximation theorem is given next.

Theorem 2. Given any continuum K C C and any € > 0, there exists an XDBP with
algebraic coefficients such that d(J(g), K) < € holds.

The distance is the usual Hausdorff distance and .J(g) stands for the Julia set of g.

As remarked above, the authors’ starting point is the results given in [C. J. Bishop,
op. cit.]. Alfredo Poirier
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Models for the Eremenko-Lyubich class. (English. English summary)

J. Lond. Math. Soc. (2) 92 (2015), no. 1, 202-221.

Assume that 2 C C is a disjoint union of unbounded, simply connected domains €2;
which have connected boundaries and are such that sequences of €; accumulate only at
infinity. Let 7 be a holomorphic map of 2 into the right half-plane which, on each €,
is conformal and sends oo to co. Let F' = exp(7). The pair (2, F) is called a model.

The Eremenko-Lyubich class consists of entire functions F' whose singular set (the set
of critical values and finite asymptotic values of F') is bounded. According to a result of
Eremenko and Lyubich, if the singular set of F' is contained in the open disc of radius
R and Q = {z: |F(z)| > R}, then (Q, F') is a model.

This very interesting paper is concerned with the relation between general models and
models which are realized by Eremenko-Lyubich functions. In particular, given a model
(Q, F), to what extent can F' be approximated by an Eremenko-Lyubich function?

The main result of the paper is Theorem 1.1, the essence of which is: Assume that
(Q, F) is a model and 0 < p < 1. Then there is an Eremenko-Lyubich function f and a
quasiconformal mapping ¢: C — C such that F' = fogon Q(2p) = {z € Q: |F(2)| > e*’}.
There are important additional conclusions concerning F', ¢ and f.

A related theorem (Theorem 1.2) concerns models of so-called disjoint type. As the
author states, a consequence of Theorem 1.2 for such models is that ‘any property
of J(F) [the Julia set of F|| that is preserved by quasiconformal mappings also holds
for J(f); for example, every component of J(f) is path connected or the Julia set has
positive area. Since it is generally easier to build a model with a desired property than to
build an entire function directly, this result is useful in constructing Eremenko-Lyubich
functions with pathological behavior.’

The paper is closely related to other recent work of the author; the links between the
papers are carefully explained. P. C. Fenton

[References|

1. L. V. AHLFORS, Lectures on quasiconformal mappings, 2nd edn, University Lecture
Series 38 (American Mathematical Society, Providence, RI, 2006). With supplemen-
tal chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR2241787

2. W. BERGWEILER, N. FAGELLA and L. REMPE, ‘Hyperbolic entire functions
with bounded Fatou components’, Preprint, 2014, arXiv:1404.0925 [math.DS].
MR3433280

3. L. BERS, ‘The moduli of Kleinian groups’, Uspekhi Mat. Nauk 29 (1974) 86-102.
Translated from the English by M. E. Novodvorskii, Collection of articles dedicated
to the memory of Ivan Georgievi¢ Petrovskii(1901-1973), I. MR0422691



Results from MathSciNet: Mathematical Reviews on the Web
(© Copyright American Mathematical Society 2026

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. C. J. BisHop, ‘Models for the Speiser class’, Preprint, 2014, http://www.math.

stonybrook.edu/~bishop/papers/S-models.pdf. MR3653246

. C. J. BisHop, ‘Constructing entire functions by quasiconformal folding’, Acta Math.

214 (2015) 1-60. MR3316755

. B. BRANNER and N. FAGELLA, Quasiconformal surgery in holomorphic dynamics,

Cambridge Studies in Advanced Mathematics 141 (Cambridge University Press,
Cambridge, 2014). MR3445628

. A. DouADY and J. H. HUBBARD, ‘On the dynamics of polynomial-like mappings’,

Ann. Sci. Ecole Norm. Sup. (4) 18 (1985) 287-343. MR0816367

. D. DrasiN, A. A. GOL'DBERG and P. PoGGI-CORRADINI, ‘Quasiconformal map-

pings in value-distribution theory’, Handbook of complex analysis: geometric function
theory, vol. 2 (Elsevier Science B. V., Amsterdam, 2005) 755-808. MR2121873

. A. E. EREMENKO and M. YU. LyuBICcH, ‘Dynamical properties of some classes of

entire functions’, Ann. Inst. Fourier (Grenoble) 42 (1992) 989-1020. MR1196102

J. B. GARNETT, Bounded analytic functions, Pure and Applied Mathematics
96 (Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1981).
MR0628971

J. B. GARNETT and D. E. MARSHALL, Harmonic measure, New Mathematical
Monographs 2 (Cambridge University Press, Cambridge, 2005). MR2150803

A. A. GOLDBERG and I. V. OsTrOVSKII, Value distribution of meromorphic func-
tions, Translations of Mathematical Monographs 236 (American Mathematical So-
ciety, Providence, RI, 2008). Translated from the 1970 Russian original by Mikhail
Ostrovskii. With an appendix by Alexandre Eremenko and James K. Langley.
MR2435270

T. IWANIEC and G. MARTIN, Geometric function theory and non-linear analysis,
Oxford Mathematical Monographs (Clarendon Press, New York, 2001). MR1859913
O. LeEHTO and K. I. VIRTANEN, Quasiconformal mappings in the plane, 2nd edn,
Die Grundlehren der mathematischen Wissenschaften 126 (Springer, New York,
1973). Translated from the German by K. W. Lucas. MR0344463

L. REMPE, ‘Rigidity of escaping dynamics for transcendental entire functions’, Acta
Math. 203 (2009) 235-267. MR2570071

L. REMPE-GILLEN, ‘Hyperbolic entire functions with full hyperbolic dimension and
approximation by Eremenko-Lyubich functions’, Proc. London Math. Soc. (3) 108
(2014) 1193-1225. MR3214678

L. REMPE-GILLEN, ‘Arc-like continua, Julia sets of entire functions and Eremenko’s
conjecture’, Preprint, 2014.

Y. G. RESHETNYAK, Space mappings with bounded distortion, Translations of Math-
ematical Monographs 73 (American Mathematical Society, Providence, RI, 1989).
Translated from the Russian by H. H. McFaden. MR0994644

S. RICKMAN, ‘Removability theorems for quasiconformal mappings,” Ann. Acad.
Sci. Fenn. Ser. A I No. 449 (1969) 8. MR0254234

S. RICKMAN, Quasireqular mappings, Ergebnisse der Mathematik und ihrer Gren-
zgebiete (3) (Results in Mathematics and Related Areas (3)) 26 (Springer, Berlin,
1993). MR1238941

Note: This list reflects references listed in the original paper as accurately as possible
with no attempt to correct errors.



Results from MathSciNet: Mathematical Reviews on the Web
(© Copyright American Mathematical Society 2026

MR3316755 30D15 05C90 30C65 30D05 30D20

Bishop, Christopher J. (1-SUNYS-NDM)

Constructing entire functions by quasiconformal folding.

Acta Math. 214 (2015), no. 1, 1-60.

The author develops a method for constructing transcendental entire functions with
good control on the singular values and on the geometry of the super-level set {| f| > R}.
More precisely, he considers the following classes of functions: S, the class of Speiser
functions, that is, the entire transcendental functions f with finite singular set S(f)
(the closure of the critical values and finite asymptotic values of f); S, C S, the class of
functions with at most n singular values; S, , C S, the class of functions with p critical
values and ¢ finite asymptotic values (in particular, the class Sz ¢ contains the Shabat
polynomials); B, the class of Eremenko-Lyubich functions, that is, of transcendental
entire functions with bounded (but possibly infinite) singular sets. A basic question
addressed in the paper is the construction of such functions.

One basic construction of the author starts with an infinite planar tree 7" satisfying
some mild geometric conditions, and then produces a method for constructing an entire
function in Ss ¢ with critical values exactly £1, so that f~!([—1,1]) approximates T in a
precise way. In fact, the author first obtains a quasiregular function g with some desired
properties and then applies the measurable Riemann mapping theorem to obtain a
quasiconformal mapping ¢ such that f = go ¢ is entire.

Using this method, the author solves a certain number of open problems, in particular,
the area conjecture of Eremenko and Lyubich and the existence of a function f with
bounded singular set whose Fatou set contains a wandering domain.

Athanase Papadopoulos
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Bishop, Christopher J. (1-SUNYS); Feinberg, Eugene A. (1-SUNYS-S);

Zhang, Junyu (PRC-ZHO-SMC)

Examples concerning Abel and Cesaro limits. (English. English summary)

J. Math. Anal. Appl. 420 (2014), no. 2, 1654-1661.

For a sequence {uy }n=0,1,... lower and upper Cesaro and Abel limits are defined by

o 1 n—1
Q:lgr_l}gfﬁzgui, —llrzrisolianul
i—
A=liminf(1 -« A=1i (1-«
A= limnf( Zw im sup( Zw

respectively.

In this paper, in light of the definitions given above, the authors describe examples of
all possible equality and strict inequality relations between upper and lower Abel and
Cesaro limits of sequences bounded above or below. They also give some propositions
related to these inequalities and equalities. These phenomena provide applications to
Markov decision processes. Abdulcabbar Sénmez
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True trees are dense. (English. English summary)

Invent. Math. 197 (2014), no. 2, 433-452.

In this remarkable paper, the author proves that certain trees are dense in the set of
plane continua, with respect to the Hausdorff distance.

First, he shows that if K is any compact connected set in the complex plane and
€ > 0, then there is a polynomial p of one complex variable with critical values exactly
at 1 and —1 such that the Hausdorff distance between K and the tree p~1([—1,1]) (a
“true tree”) is less than e.

Then, the author proves that true trees are the same as conformally balanced trees.
A tree T with n edges is called conformally balanced if its complement is the image of
the exterior of the unit disk under a conformal mapping f fixing infinity and such that
each side of each edge corresponds to an arc of length 7/n and f(z) = f(w) implies that
f'(2) = f/(w) for almost all z,w on the unit circle. Then the harmonic measure with
respect to the point at infinity is the same on the two sides of each edge.

The proof of the main theorem begins with the approximation of a given continuum by
small squares, in a grid of squares, that intersect the continuum. The author then devises
imaginative ways of creating various trees from this configuration. Quasiconformal
mappings are used as a tool. Finally this leads us to a conformally balanced tree.

A. Hinkkanen
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Tree-like decompositions of simply connected domains. (English. English
summary)

Rev. Mat. Iberoam. 28 (2012), no. 1, 179-200.

The paper deals with the problem of decomposing a simply connected domain into nice
subdomains. A circular arc crosscut is a circular arc in ) with distinct endpoints on
09, and a domain € is a Lipschitz crescent if there are e > 0 and 6 € (0,7/2) so that
0f) consists of two arcs connecting —1 to +1; the first is a circular arc in the upper
half-plane that makes an angle 6 with the real line at £1, and the second is a Lipschitz
graph for which the slopes are bounded above by 6 — ¢ and below by —e. Also, every
Mobius image of such a domain is a Lipschitz crescent, and an M-Lipschitz crescent is
a Lipschitz crescent which is the image of an M-Lipschitz function. Furthermore, the
1-dimensional measure [(F) of a set E in the plane is

I(E)= lignﬁiglf {Z 2r;: ECUB(zj,15),r; < 5} .
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The author proves the following.

Theorem. There is an M < oo such that every simply connected domain €2 has a
collection of disjoint circular arc crosscuts I' = | v, with >, I(vx) < M [(09Q) and such
that each connected component of 2 \ T is an M-Lipschitz crescent.

The proof is based on the concepts of medial axis and medial axis flow from computa-
tional geometry, and the theorem contains a theorem of P. Jones from 1990 which was
proved using only the conformal mapping from the disk onto 2. Bodo Dittmar
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A set containing rectifiable arcs QC-locally but not QC-globally. (English.
English summary)

Pure Appl. Math. Q. 7 (2011), no. 1, 121-138.

The quasiconformal Jacobian problem asks for a characterization of weights w on R"
for which there exists a quasiconformal map f such that C~lw < J ¢t < Cf almost
everywhere for some constant C. This question goes back to G. David and S. W.
Semmes [in Analysis and partial differential equations, 101-111, Lecture Notes in Pure
and Appl. Math., 122, Dekker, New York, 1990; MR1044784] and is further motivated
by its direct relation to the problem of bi-Lipschitz parametrization of metric spaces;
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see the paper by M. Bonk, J. Heinonen and E. Saksman [in In the tradition of Ahlfors
and Bers, III, 77-96, Contemp. Math., 355, Amer. Math. Soc., Providence, RI, 2004;
MR2145057].

At present it is not known whether the condition C~'w < J ¢ < Cf restricts the size
of the set on which w blows up to co. Specifically, it is not known whether there exists a
compact null set E such that no weight w with w(xz) — 0o as x — F can be comparable
to the Jacobian of a quasiconformal map. A stronger form of this question is to ask for
a compact null set E such that every quasiconformal image of F/ contains a rectifiable
curve. The existence of such a set is not known either.

However, the author constructs a compact null set £ C C for which there exists a
constant Ky > 1 such that the image of E under any Ky-quasiconformal map contains a
rectifiable curve. He also proves that there exist quasiconformal maps f with distortion
about K, such that f(FE) contains no rectifiable curves. This is the meaning of “QC-
locally but not QC-globally” in the title. The construction involves a number of elements
of independent interest, such as a “low visibility forest” in the plane.

The paper can be considered as a sequel to the author’s previous work [in In the tra-
dition of Ahlfors-Bers. IV, 7-18, Contemp. Math., 432, Amer. Math. Soc., Providence,
RI, 2007; MR2342802|, where an A; weight which is not comparable to any quasicon-
formal Jacobian was constructed. Leonid V. Kovalev
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Tree-like decompositions and conformal maps. (English. English summary)

Ann. Acad. Sci. Fenn. Math. 35 (2010), no. 2, 389-404.

Let D denote the unit disc and let 2 be a Jordan domain with rectifiable boundary
09, where we denote the length of a boundary arc I by I(I). The region {2 is said to be
chord-arc if there is a number M < oo such that [(o(z,y)) < M|z —y| for all z,y € 09,
where o(z,y) denotes the shorter arc on 9 between z and y. Any such region  has a
collection of cross-cuts that divide it into uniformly chord-arc subdomains, that is, each
of the subdomains is chord-arc with the same constant M. Such a division is called a
tree-like decomposition of ). For a Jordan region ) with rectifiable boundary and for a
tree-like decomposition of €2, the author constructs a map from 92 onto 9D that has a
quasiconformal extension from €2 onto D, where the constant K of quasi-conformality
depends only on the uniform chord-arc constant M. The mapping of boundary to
boundary is obtained by piecing together functions on sections of the boundary of 2
that are chosen to correspond to the individual boundaries of the subdomains of the
tree-like decomposition. The result answers a question of S. A. Vavasis. This paper is
related to two other yet-to-appear papers of the author dealing with related questions
due to Vavasis. P. Lappan
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Bounds for the CRDT conformal mapping algorithm. (English. English
summary)

Comput. Methods Funct. Theory 10 (2010), no. 1, 325-366.

The Cross Ratios and Delaunay Triangulations (CRDT) algorithm numerically com-
putes the classical Schwarz-Christoffel map from the unit disk ID to the interior of a
polygon P (an n-gon), with the following steps:

(1) add extra vertices to P so that the resulting polygon P’ has edges that are “well
separated”;

(2) use the Delaunay Triangulation of P’ to construct an initial guess for the images
of the vertices on the unit circle T;

(3) compute the conformal map with an existing numerical iterative process using the
initial guess determined at step 2.

The authors of the algorithm suspected that the so-produced initial guess might be
within a bounded distance from the actual mapping parameters (to be determined)
when measured in terms of a metric derived from cross ratios (the notion of cross ratio
is defined in complex analysis). The main goal of the paper under review is to show
that the conjecture is true if the cross ratio is replaced by the corresponding conformal
modulus.

More specifically, given two n-tuples {wy,ws, ..., w,} and {z1, 22,..., 2, } of T = 9D,
the distance between the two tuples is defined by

dqc(w, z) =
inf{log K: 3 K-quasiconformal h: D — D such that h(z) = w}.

With this definition, the main result of the paper is the following theorem, which
shows that the initial guess on the unit circle is uniformly close to the actual mapping
parameters in a quasiconformal sense.

Independent of the polygon P, there is a constant C' < oo such that the initial guess
w of the CRDT algorithm satisfies dqc(w, z) < C, where z is the actual pre-vertex of
the conformal map.

Furthermore, let f: 2 — R be a conformal map, where € is a generalized quadrilateral
with vertices {z1, 22, 23, 24} mapped to the four corners of the rectangle R, unique up to
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Euclidean similarities, and define

_ |f(22) = f(=1)]

|/ (22) = f(23)]
which measures the eccentricity of the rectangle. Then, the above theorem leads to the
estimate

Modg(2)

|log Modp(2') — log Modp (w')| < log K

for any 2’ = {21, 2j2, 2j3, 2ju} C 2, W = {wj1, w2, wj3, wja} Cw.

In addition, the author gives counterexamples that show that the conjecture by the
authors of the CRDT algorithm is false. He also gives a few examples for which bounds
for QC distance are explicitly computed, that in turn shows the sharpness of the above
estimate. A discussion is also provided to show that adding extra vertices, as the CRDT
algorithm normally does, may not make much difference in improving an initial guess
using only original vertices. In some cases, adding extra vertices can in fact make an
initial guess worse. Finally, open questions are proposed. Chenglie Hu
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Conformal mapping in linear time. (English. English summary)

Discrete Comput. Geom. 44 (2010), no. 2, 330-428.

This is a very interesting paper, and a technical masterpiece containing many original
ideas, on the explicit computation of a quasiconformal approximation to a conformal
mapping of the unit disk D = {z € C:|z| < 1} in the complex plane C to a polygon €2
with n sides. Suppose that € > 0 is small. The author proves that there is a (1 +¢)-
quasiconformal mapping f:D — Q that can be computed in O(nplogp) steps, where
p=0(log(1/¢)). This might be viewed as the computation of a conformal map up to a
small quasiconformal error, in linear time with respect to n.

The Schwarz—Christoffel formula provides the desired conformal mapping, but re-
quires the knowledge of the prevertices, the points on the unit circle that will be
mapped onto the vertices of the polygon. The author finds an algorithm that can be
used to approximate the prevertices as accurately as one likes, with an estimate on the
number of steps required to get to a preassigned level of accuracy. The true set of prever-
tices and the set that one finds by the algorithm are compared by means of the smallest
possible dilatation of a quasiconformal self-map of D taking one set to the other.

How is this done? A given polygon € is approximated by a subdomain G that is the
union of finitely many suitably chosen disks. One finds the dome over G in hyperbolic
3-space. It consists of finitely many geodesic faces. The dome is deformed, giving rise to
a finite sequence of domains, varying slowly, and going from G to D.

There is a known construction of a quasiconformal mapping, by means of the dome,
of D onto GG, which is then varied, using the intermediate domains as a tool, to get a
map of D onto G with dilatation smaller than a certain absolute constant. After this,
further procedures can be used to improve the dilatation to be as close to 1 as desired.

From a quasiconformal mapping of D onto G one gets by approximation a quasi-
conformal mapping onto {2, with small dilatation. The quasiconformal prevertices so
obtained are close to what the true but unknown prevertices would be, which should be
used with the Schwarz—Christoffel formula. A. Hinkkanen
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Bishop, Christopher J. (1-SUNYS)

Optimal angle bounds for quadrilateral meshes. (English. English summary)
Discrete Comput. Geom. 44 (2010), no. 2, 308-329.

The main result of this paper is the following theorem: “Any simply-connected planar
domain whose boundary is a simple n-gon has a quadrilateral mesh with O(n) pieces
so that all angles are between 60° and 120°, except that original < 60° angles of the
polygon remain. The mesh can be constructed in time O(n).” The theorem extends and
strengthens earlier results by M. W. Bern and D. Eppstein [Internat. J. Comput. Geom.
Appl. 10 (2000), no. 4, 347-360; MR1791192]. For its proof the author employs various
function theoretic tools (such as conformal mappings) and proves several intermediate
(but interesting in their own right) results concerning the subdivision of the unit disc
into hyperbolic pentagons, quadrilaterals and triangles and the meshing of each of these
regions into quadrilaterals with angles in the interval [60°, 120°]. N. Papamichael
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A central set of dimension 2. (English. English summary)

Proc. Amer. Math. Soc. 136 (2008), no. 7, 2453-2461.

The central set C'(D) of a plane domain D is the set of points z € D for which the
disc D(z,dist(z,0D)) is not strictly contained in any larger disc contained in D. The
authors resolve a question of Fremlin by constructing a domain D C R? for which C(D)
has Hausdorff dimension two. In addition, they show that the domain in question can be
chosen to be arbitrarily close to the unit disc (in a certain technical sense whose precise
statement we omit) and so that C(D) has positive H, measure for any gauge function
¢ for which lim;_,q p(t)/t? = +o0.

By way of contrast, the medial axis M (D) of D, defined as the set of points z € D for
which dist(z, dD) is realized by at least two distinct points of D, always has Hausdorff
dimension one, by a theorem of Erdés. A simple example of a domain D for which
C(D) # M(D) is any noncircular ellipse.

The domain D which the authors construct has medial axis M (D), which is a tree
whose closure M (D) is contained in C'(D). The authors construct a probability mea-
sure g on OM (D) := M (D) ~ M (D) with controlled volume decay by equidistributing
measure along the limbs of M (D). An appeal to the Mass Distribution Principle yields

the desired estimate H,(C(D)) > H,(OM (D)) > 0. Jeremy T. Tyson
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Decreasing dilatation can increase dimension. (English. English summary)
Lllinois J. Math. 51 (2007), no. 4, 1243-1248.

Let D be the unit disk and let

|p(z) Pdady

CM(D) = {,u € L>°(D): -T2l is a Carleson measure}.

For a Fuchsian group G acting on D let

M) = {1 e L2(D) Il < 199 € Gupi= Luog ),

M(G) = M(G)NCM(D).

When G is the identity we will write M (1) and M(1), correspondingly. For p € M(1)
there exists a quasiconformal map f, of D to itself with dilatation p. A question of G.
Z. Cui and M. Zinsmeister [Illinois J. Math. 48 (2004), no. 4, 1223-1233; MR2114154]
is: Let u € M(1) be such that f,(0D) is a bi-Lipschitz image of a circle or a line. Is the
same true for f,(0D), 0 <t < 17 The author shows that this is false even if f,(0D) is
a circle. Bodo Dittmar
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Conformal welding and Koebe’s theorem. (English. English summary)

Ann. of Math. (2) 166 (2007), no. 3, 613—656.

Let D be the open unit disk in the plane R?, let T = dD, and let D* = R? < (DU
T). For any Jordan curve I' C R?, let  and Q* respectively be its bounded and
unbounded complementary components. If f:D — Q and ¢:D* — Q* are conformal
homeomorphisms, then h = g~ ' o f: T — T is said to be a conformal welding.

It is known that there exist orientation-preserving homeomorphisms of the circle that
are not conformal weldings.

In the paper under review, the author proves, using Koebe’s circle domain theorem,
several results that show that every homeomorphism of the circle is close to a conformal
welding in a precise sense. In particular, he obtains the following;:

Theorem. For any orientation-preserving homeomorphism A: T — T and any € > 0,
there exist a set £ C T such that |E|+|h(E)| < € (where |E| denotes Lebesgue measure)
and a conformal welding homeomorphism H:T — T such that h(z) = H(z) for all x €
T\ E.

Theorem. An orientation-preserving homeomorphism h: T — T is the conformal weld-
ing of a flexible curve if and only if there is a Borel set E such that both E and its
complement have zero logarithmic capacity.

The paper also contains results on generalized conformal welding, which is defined
as follows. A map h is said to be a generalized conformal welding on the set £ C T if
there are conformal maps f:D — Q and g: D* — Q* onto disjoint domains such that f
has radial limits on F, g has radial limits on h(E), and these limits satisfy f =goh
on E. Generalized conformal welding was introduced by D. Hamilton, who used it in
the study of Kleinian groups and of Julia sets. In the paper under review, the author
obtains results concerning generalized welding that were conjectured by Hamilton.

The author explains the relation of his results with the theorem of R. L. Moore,
stating that given a decomposition of the plane satisfying certain conditions (and called
a Moore decomposition) then the quotient space obtained by identifying each subset
to a point is homeomorphic to the plane. He relates the question of which Moore
decompositions are conformal, and the question of when is the quotient map unique up
to a Mobius transformation, to his approach of conformal welding by collapsing arcs of
a foliation.

The author also provides a new and elementary proof of the fact that quasisymmetric
maps are conformal weldings, and he states the following conjecture that generalizes
Koebe’s circle conjecture: For any orientation-preserving homeomorphism h:T — T,
there exists a countable subset E2 C T such that h is a generalized conformal welding on
TN E. Athanase Papadopoulos



Results from MathSciNet: Mathematical Reviews on the Web
(© Copyright American Mathematical Society 2026

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

[References]

L. AHLFORS AND A. BEURLING, Conformal invariants and function-theoretic null-
sets, Acta Math. 83 (1950), 101-129. MR0036841

. LARS V. AHLFORS, Lectures on Quasiconformal Mappings, D. Van Nostrand Co.,

Inc., Toronto, Ontario-New York-London, 1966. MR0200442

. Z. BALOGH AND M. BONK, Lengths of radii under conformal maps of the unit disc,

Proc. Amer. Math. Soc. 127 (1999), 801-804. MR1469396

. A. BEURLING AND L. AHLFORS, The boundary correspondence under quasiconfor-

mal mappings, Acta Math. 96 (1956), 125-142. MR0086869

. C. J. Bisnopr, Constructing continuous functions holomorphic off a curve, J. Funct.

Anal. 82 (1989), 113-137. MR0976315

. C. J. BisHoP, Boundary interpolation sets for conformal maps, Bull. London Math.

Soc. 38 (2006), 607-616. MR2250753
C. J. BisHoP, Some homeomorphisms of the sphere conformal off a curve, Ann.
Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 323-338. MR1274085

. C. J. Bisaopr, L. CARLESON, J. B. GARNETT, AND P. W. JONES, Harmonic

measures supported on curves, Pacific J. Math. 138 (1989), 233-236. MR0996199

. A. BROWDER, Introduction to Function Algebras, W. A. Benjamin, Inc., New York-

Amsterdam, 1969. MR0246125

A. BROWDER AND J. WERMER, Some algebras of functions on an arc, J. Math.
Mech. 12 (1963), 119-130. MR0144223

A. BROWDER AND J. WERMER, A method for constructing Dirichlet algebras, Proc.
Amer. Math. Soc. 15 (1964), 546-552. MR0165385

L. CARLESON, Representations of continuous functions, Math. Z. 66 (1957), 447—
451. MR0084035

L. CARLESON, Selected Problems on Fxceptional Sets, Van Nostrand, 1967.
MR0225986

R. J. DAVERMAN, Decompositions of Manifolds, Volume 124 of Pure and Applied
Mathematics, Academic Press Inc., Orlando, FL, 1986. MR0872468

G. DAVID, Solutions de ’équation de Beltrami avec |p|oo = 1, Ann. Acad. Sci. Fenn.
Ser. A I Math. 13 (1988), 25-70. MR0975566

PETER DUREN, HAROLD M. EDWARDS, AND UTA C. MERZBACH, editors, A
Century of Mathematics in America. Part III, American Mathematical Society,
Providence, RI, 1989. MR1025365

B. FITZPATRICK, JR, Some aspects of the work and influence of R. L. Moore, in
Handbook of the History of General Topology 1 (1997), 41-61, Kluwer Acad. Publ.,
Dordrecht. MR1617585

F. W. GEHRING AND W. K. HAYMAN, An inequality in the theory of conformal
mapping, J. Math. Pures Appl. 41 (1962) 353-361. MR0148884

D. H. HAMILTON, Generalized conformal welding, Ann. Acad. Sci. Fenn. Ser. A I
Math. 16 (1991), 333-343. MR1139801

D. H. HAMILTON, Simultaneous uniformisation, J. Reine Angew. Math. 455 (1994),
105-122. MR1293875

D. H. HAMILTON, Length of Julia curves, Pacific J. Math. 169 (1995), 75-93.
MR1346247

D. H. HamMitToN, Conformal welding, in The Handbook of Geometric Function
Theory. North Holland, 2002. MR1966191

Z.-X. HE AND O. ScHRAMM, Fixed points, Koebe uniformization and circle pack-
ings, Ann. of Math. 137 (1993), 369-406. MR1207210

Z.-X. HE AND O. ScHRAMM, Koebe uniformization for ”almost circle domains”,



Results from MathSciNet: Mathematical Reviews on the Web
(© Copyright American Mathematical Society 2026

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Amer. J. Math. 117 (1995), 653-667. MR1333941

R. KAUFMAN, Fourier-Stieltjes coefficients and continuation of functions, Ann.
Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 27-31. MR0752389

R. KAUFMAN, Plane curves and removable sets, Pacific J. Math. 125 (1986), 409
413. MR0863535

P. KoOEBE, Uber die uniformisierung beliebiger analytisher kurven, III, Nachr. Ges.
Wiss. Gott (1908), 337-358.

P. KoeBE, Abhandlungen zur theorie der konformen abbildung: Vi abbildung
mehrfach zusammenhéngender bereiche auf kreisbereiche etc., Math. Z. 7 (1920),
235-301. MR1544421

O. LEHTO, Homeomorphisms with a given dilatation, In Proceedings of the Fifteenth
Scandinavian Congress (Oslo, 1968, 5873, Berlin, 1970, Springer. MR0260997

O. LEHTO AND K. I. VIRTANEN, On the existence of quasiconformal mappings with
prescribed complex dilatation, Ann. Acad. Sci. Fenn. Ser. A I No. 274 (1960), 24.
MR0125962

O. LEaTO AND K. I. VIRTANEN, Quasiconformal Mappings in the Plane, Springer-
Verlag, New York, second edition, 1973, Translated from the German by K. W. Lu-
cas, Die Grundlehren der mathematischen Wissenschaften, Band 126. MR0344463

K. LUNDBERG, A theorem on the boundary behavior of a uniformly convergent
sequence of conformal maps on the disk, PhD thesis, State University of New York
at Stony Brook, Stony Brook, NY, USA, August 2005. MR2707849

R. L. MooRrEg, Concerning upper semi-continuous collections of continua, Trans.
Amer. Math. Soc. 27 (1925), 416-428. MR1501320

R. L. MoOORE, Concerning triods in the plane and the junction points of plane
continua, Proc. Nat. Acad. Sci. 14 (1928), 85-88.

K. Oikawa, Welding of polygons and the type of Riemann surfaces, Kodai Math.
Sem. Rep. 13 (1961), 37-52. MR0125956

ALBERT PFLUGER, Ueber die Konstruktion Riemannscher Flachen durch Verhef-
tung, J. Indian Math. Soc (N.S.) 24 (1960), 401-412. MR0132827

C. R. PITTMAN, An elementary proof of the triod theorem, Proc. Amer. Math. Soc.
25 (1970), 919. MR0263049

CH. POMMERENKE, On the boundary continuity of conformal maps, Pacific J.
Math. 120 (1985), 423-430. MR0810781

CH. POMMERENKE, Boundary Behaviour of Conformal Maps, Springer-Verlag,
Berlin, 1992. MR 1217706

W. RUDIN, Boundary values of continuous analytic functions, Proc. Amer. Math.
Soc. 7 (1956), 808-811. MR0081948

L. SArIO AND K. OikAawA, Capacity Functions, Springer-Verlag New York Inc.,
New York, 1969. MR0254232

J. V. VaInIO, Conditions for the possibility of conformal sewing, Ann. Acad. Sci.
Fenn. Ser. A1 Math. Dissertationes 53 (1985), 43. MR0779328

J. V. VAINIO, On the type of sewing functions with a singularity, Ann. Acad. Sci.
Fenn. Ser. AT Math. 14 (1989), 161-167. MR0997980

J. V. VAINIO, Properties of real sewing functions, Ann. Acad. Sci. Fenn. Ser. A 1
Math. 20 (1995), 87-95. MR1304108

R. L. WILDER, The mathematical work of R. L. Moore: its background, nature and
influence, Arch. Hist. Exact Sci. 26 (1982), 73-97. MR0664470

G. B. WiLLIAMS, Approximation of quasisymmetries using circle packings, Discrete
Comput. Geom. 25 (2001), 103-124. MR1797299

G. B. WiLLIAMS, Discrete conformal welding, Indiana Univ. Math. J. 53 (2004),
765—-804. MR2086700



Results from MathSciNet: Mathematical Reviews on the Web
(© Copyright American Mathematical Society 2026

Note: This list reflects references listed in the original paper as accurately as possible
with no attempt to correct errors.
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Bishop, Christopher J. (1-SUNYS)

% An A; weight not comparable with any quasiconformal Jacobian. (English.
English summary)

In the tradition of Ahlfors-Bers. IV, T-18, Contemp. Math., 432, Amer. Math. Soc.,
Providence, RI, 2007.

The quasiconformal Jacobian problem of G. David and S. W. Semmes [in Analysis
and partial differential equations, 101-111, Dekker, New York, 1990; MR1044784] asks
for a characterization of those nonnegative functions w in R™, n > 2, for which there
exist a constant M > 1 and a quasiconformal map f so that M 1w < J ¢ < Mw almost
everywhere. A related problem is to find out which metric spaces are bi-Lipschitz
equivalent to Euclidean spaces.

In order to understand these problems, one looks for natural sufficient conditions. A
well-known question along these lines was asked by Semmes [Ann. Acad. Sci. Fenn. Ser. A
I Math. 18 (1993), no. 2, 211-248; MR1234732] and J. Heinonen and Semmes [Conform.
Geom. Dyn. 1 (1997), 1-12 (electronic); MR1452413]: Is every A;-weight comparable to
a quasiconformal Jacobian in the above sense? The paper under review gives a negative
answer to this question. The interesting counterexample consists of a Sierpinski carpet
E C R? and an A;-weight w which blows up on E. The author shows that careful
constructions of F and w imply that a quasiconformal map f with Jacobian comparable
to w must have the property that fE contains a rectifiable curve. This gives the desired
contradiction, since the preimage of such a curve under f should be a single point under
these circumstances. By combining the construction with earlier results, the author also
shows that there exists a geometrically well-behaved surface inside R? which is not bi-
Lipschitz equivalent to the plane. To conclude the paper, the author presents related
open problems. Kai Rajala
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Bishop, Christopher J. (1-SUNYS)

A criterion for the failure of Ruelle’s property. (English. English summary)
Ergodic Theory Dynam. Systems 26 (2006), no. 6, 1733-1748.

Summary: “D. Ruelle [Ergodic Theory Dynamical Systems 2 (1982), no. 1, 99-107;
MRO0684247] proved that for quasiconformal deformations of cocompact Fuchsian
groups, the Hausdorff dimension of the limit set is an analytic function of the de-
formation. In this paper, we give a criterion for the failure of analyticity for certain
infinitely generated groups. In particular, we show that it fails for any infinite abelian
cover of a compact surface, answering a question posed by K. Astala and M. Zinsmeister
in [Ann. Acad. Sci. Fenn. Ser. A T Math. 20 (1995), no. 1, 81-86; MR1304107].”

[References]

1. L. V. Ahlfors. Lectures on Quasiconformal Mappings (Mathematical Studies, 10).
Van Nostrand, New York, 1966. MR0200442
2. K. Astala and M. Zinsmeister. Mostow rigidity and Fuchsian groups. C. R. Acad.
Sci. Paris Sér I Math. 311 (1990), 301-306. MR1071631
3. K. Astala and M. Zinsmeister. Holomorphic families of quasi-Fuchsian groups.
Ergod. Th. & Dynam. Sys. 14 (1994), 207-212. MR1279468
4. K. Astala and M. Zinsmeister. Abelian coverings, Poincaré exponent of convergence
and holomorphic deformations. Ann. Acad. Sci. Fenn. 20 (1995), 81-86. MR1304107
5. C. J. Bishop. Big deformations near infinity. Illinois J. Math. 47 (2003), 977-996.
MR2036986
6. C. J. Bishop and P. W. Jones. Hausdorff dimension and Kleinian groups. Acta.
Math. 179 (1997), 1-39. MR 1484767
7. C. J. Bishop and P. W. Jones. Wiggly sets and limit sets. Arkiv Mat. 35 (1997),
201-224. MR1478778
8. C. J. Bishop and P. W. Jones. Compact deformations of Fuchsian groups. J. Anal.
Math. 87 (2002), 5-36. MR1945276
9. A. Douady and C. J. Earle. Conformally natural extension of homeomorphisms of
the circle. Acta Math. 157(1-2) (1986), 23-48. MR0857678
10. F. W. Gehring and J. Vaisdla. Hausdorff dimension and quasiconformal mappings.
J. London Math. Soc. (2) 6 (1973), 504-512. MR0324028
11. P. J. Nicholls. The Ergodic Theory of Discrete Groups (LMS Lecture Notes, 143).
Cambridge University Press, Cambridge, 1989. MR1041575



Results from MathSciNet: Mathematical Reviews on the Web
(© Copyright American Mathematical Society 2026

12. D. Ruelle. Repellers for real analytic maps. Ergod. Th. & Dynam. Sys. 2 (1982),
99-107. MR0684247

13. D. Sullivan. Related aspects of positivity in Riemannian geometry. J. Differential
Geom. 25 (1987), 327-351. MR0882827

Note: This list reflects references listed in the original paper as accurately as possible
with no attempt to correct errors.

MR2250753 (2007£:30014) 30C35 30C62 30C85

Bishop, Christopher J. (1-SUNYS)

Boundary interpolation sets for conformal maps. (English. English summary)
Bull. London Math. Soc. 38 (2006), no.4, 607-616.

A compact subset E of the unit circle T is said to be an interpolation set for conformal
mappings if given any homeomorphism g: D — Q C R? of the unit disk which extends
continuously to T, there is a conformal map f: D — € which extends continuously to T
such that f|g = ¢g|g. The main result of this paper states that a compact subset of the
unit circle is an interpolation set for conformal mappings if and only if it has logarithmic
capacity zero. For the proof of this result, the author establishes the following striking
theorem.

Theorem. Suppose that £ C T is a compact set of zero logarithmic capacity and
h: T — T is an orientation-preserving homeomorphism. Then there is a conformal map
f:D— Q C D onto a Jordan domain  such that f|g = h|g.

The proof of this theorem, which occupies a large portion of this paper, follows
from Evans’ theorem in potential theory and an explicit geometric construction. In
this process, one constructs first a quasiconformal map that does the interpolation. To
obtain a conformal map, then one combines this with an iterative construction that
solves a Beltrami equation at each step to keep the map conformal. As indicated in the
paper, this theorem can be used in solving conformal interpolation problems as well as
conformal welding problems. Shan Shuang Yang
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Orthogonal functions in H*°. (English. English summary)

Pacific J. Math. 220 (2005), no. 1, 1-31.

Let H*® denote the Banach algebra of bounded holomorphic functions on the unit disk
D. If ¢p € H* is an inner function with ¢(0) = 0, it is easy to see that {¢"}, n =
0,1,2,..., is orthogonal, that is, fT Y™pmdl = 0 whenever n # m. In 1988, W. Rudin
asked if the converse is true; this is called Rudin’s “orthogonality conjecture”. The
conjecture was disproved by C. Sundberg [J. Amer. Math. Soc. 16 (2003), no. 1, 69—
90 (electronic); MR1937200], and by the author, independently [Publ. Mat. 37 (1993),
no. 1, 95-109; MR1240926].

For a function f € H* with ||f||oc <1 and a measurable set E in D, let ps(E) =
|f~1(E)|, where | -| denotes the normalized Lebesgue measure on T. A measure y on D
is called radial if u(E) = u(e E) for every 6 and measurable set E. The author proves
that {f"}, n=0,1,2,..., is orthogonal if and only if ;¢ is a radial probability measure
on D such that [5log(1/|z])dps(z) < oco. Moreover, given any measure satisfying these
conditions, then there is f € H*, || f||ls < 1, such that p = puy.

As an application, it is proved that there is f € H* with || f||coc <1 such that for any
analytic g on D, g is in the Bergman space AP if and only if go f is in the Hardy space
H? and their norms are equal. Also, it is proved that there is an orthogonal f such that
f(2)/z is a nonconstant outer function. Keiji Izuchi
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Bishop, Christopher J. (1-SUNYS)

% An explicit constant for Sullivan’s convex hull theorem. (English. English
summary)
In the tradition of Ahlfors and Bers, III, 41-69, Contemp. Math., 355, Amer. Math.
Soc., Providence, RI, 2004.
Let Q be a simply connected domain in the complex plane, which we identify in the
usual way as a plane in 3-space. We identify the upper half space with the hyperbolic
3-space and denote by C(99) the hyperbolic convex hull of 92, that is, the hyperbolic
convex hull of the set of all hyperbolic geodesics whose endpoints lie in 0€2. Let S be the
boundary component that separates  from C(9€).

Let ps denote the intrinsic metric of S, using the hyperbolic arc length, and let p
denote the hyperbolic metric in the unit disk D or in 2. Thurston observed that there is
an isometry ¢ of (S, pg) onto (D, p). Further, there is an absolute constant Ky and a K-
bi-Lipschitz map o of (2, p) to (S, ps) which extends continuously to the identity map
on 0f2. Thus o is K-quasiconformal for an absolute constant K. D. B. A. Epstein and
A. Marden [in Analytical and geometric aspects of hyperbolic space (Coventry/Durham,
1984), 113-253, Cambridge Univ. Press, Cambridge, 1987; MR0903852] proved that one
can take Ky~ 88.2 and K =~ 82.6.

If Q is invariant under a group of Mobius transformations, one can ask what happens
to K if one chooses o, as one then may, to commute with the group action. We do not
discuss that in greater detail here but refer to the paper by Epstein and Marden.

In this paper, the author develops a method to construct such maps o without group
invariance, and proves that one can take K = 7.82 and Ky = 13.3, hence improving
previously known dilatation bounds.

To prove the result, the author develops some very clever geometric procedures to
define a map. These are too complicated for us to explain here, but the author gives a
nice overview of the construction in Section 2 of the paper. Roughly speaking, he first
constructs the map for domains that can be expressed as the union of finitely many nice
pieces (crescents and hyperbolic triangles) and then uses approximation to extend the
result to general simply connected domains €.

A corollary is that if f is a conformal map of D onto €2, then one can write f =go
h, where h is a 7.82-quasiconformal self-map of D while |¢’| is bounded away from zero.
The author proved earlier [Ark. Mat. 40 (2002), no. 1, 1-26; MR1948883] that if this were
to hold with 7.82 replaced by 2, then the Brennan conjecture [J. E. Brennan, J. London
Math. Soc. (2) 18 (1978), no. 2, 261-272; MR0509942] would follow, but recently D. B.
A. Epstein and V. Markovié¢ [Ann. of Math. (2) 161 (2005), no. 2, 925-957; MR2153403]
showed that sometimes the dilatation must be > 2.1 here. A. Hinkkanen
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The linear escape limit set. (English. English summary)

Proc. Amer. Math. Soc. 132 (2004), no. 5, 1385-1388.

Let G be a discrete group of isometries, acting on hyperbolic space B", n > 2, and let
A be its limit set. For a point = € A, the radial segment [0, ) projects to a geodesic
ray 7 in the quotient M = B"™/G. The bounded limit set Aj consists of all those x € A
for which the corresponding ray v remains bounded for all time. On the other hand,
the linear escape limit set A; is the set of all € A for which the corresponding ray
escapes to oo at the fastest possible speed. Precisely, parameterizing « by arclength, = €



Results from MathSciNet: Mathematical Reviews on the Web
(© Copyright American Mathematical Society 2026

Ay if

oo distar (3 (2),7(0)

t—o0 t

> 0.

Clearly, the bounded limit set is a subset of the conical limit set, and the linear escape
limit set is a subset of the escaping limit set.

The main theorem in the current paper says that the dimension of the limit set A is
equal to either the dimension of the bounded limit set A; or to the dimension of the
linear escape limit set A;. Petra Bonfert-Taylor
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Big deformations near infinity. (English. English summary)

Lllinois J. Math. 47 (2003), no.4, 977-996.

Suppose G is a Fuchsian group acting in the unit disk, D, and p is a Beltrami coefficient
for G with support in D. Let f be a (suitably normalized) solution to the Beltrami
equation (f)z = puf.. Then G, := fGf~! is a quasi-Fuchsian group. Let 6(u) = 6(G,,)
be the critical exponent for G,,, with A, being the limit set of G,, and dim(e) denoting
Hausdorff dimension, dim(u) = dim(A,). Call g big if §(x) > 1. G has big deformations
near oo if there exist €,d > 0 such that, for each compact K C S :=D/G, there exists a
i, supported on the complement of K, satisfying (1) ||i||cc <1—¢€, and (2) 6(G,) > 1+
J.

This paper is devoted to finding conditions for the existence of big deformations
of G (or equivalently of S) near co. The conditions relate to injectivity radius and
whether G has divergence type. Without details and sometimes using a slightly different
language, the following infinitely generated, torsion free groups are shown to admit big
deformations:

(1) The injectivity radius of G is bounded above and below away from zero.

(2) G is of divergence type and the injectivity radius is bounded below away from

zero.

(3) G satisfies a technical geometric condition (Theorem 1.2 in the paper).
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It is also shown that groups admitting infinite pants decompositions, where the hyper-
bolic lengths of the border curves of the individual pants form a null sequence, do not
have big deformations near infinity.

A related notion is defined as follows. GG has the Ruelle property if, whenever there is
a real analytic family {G}} of quasiconformal deformations of G, dim(A(G;)) is a real
analytic function of t. The Ruelle property holds for cocompact families.

The author has previously shown [“A criterion for the failure of Ruelle’s property”,
preprint, SUNY Stony Brook, Stony Brook, NY, 1999, available at www.math.sunysb.
edu/~bishop/classes/math626.F00/math626.html] that, under rather natural side con-
ditions, the existence of big deformations implies the failure of the Ruelle condition.
Here, other examples are given where the Ruelle property fails. William Abikoff
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On conformal dilatation in space. (English. English summary)
Int. J. Math. Math. Sci. 2003, no. 22, 1397-1420.
The problem of showing that a quasiconformal mapping with dilatation suitably tending
to 1 near a point resembles a conformal mapping at that point has received much
attention over the years. A few similar results for quasiregular mappings have also been
proved. This paper proves some nice results of this type.

Suppose f: G — R" is a nonconstant quasiregular map, with inner dilatation L¢. For
y € G and U a neighborhood of y in G, let

I(y,U) = ! /[]Lf(x)_ldx.

Wn—1 |:E_y|n

One of the main results says that if G=R", n >3, f(0) =0, and I(r) =1(0,B(0,r)) <
oo for some fixed 7 > 0, then f has injectivity radius R¢(0) > 0 and there is a constant
C such that

~I(R) I (R)

€
i <(C<L
i V@) —f— <0< max @)=z~

0<R< Rf(O),

and | f(z)|/|x| = C as x — 0. Moreover the same result holds for quasiconformal map-
pings in the plane. A uniform variant of this result implies that if f is quasiconformal,
n > 2, and I(y,U) is uniformly convergent on a compact rectifiable curve v in G, then
f(v) is rectifiable. The proofs are based on the concept of the infinitesimal space and
new Grotsch-type modulus estimates. Stephen Buckley
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Bishop, Christopher J. (1-SUNYS)

0-stable Fuchsian groups. (English. English summary)

Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 153-167.

There are two non-negative real numbers associated to every Kleinian group G: the
Hausdorff dimension dim(A(G)) of its limit set A(G) and the critical exponent of its
Poincaré series 6(G). It is known that §(G) < dim(A(G)). It is natural to ask when
equality holds. It is known that equality holds for geometrically finite groups as a result
of work of the author available in preprints. A Fuchsian group G is called d-stable if
§(G") = dim(A(G")) for every quasiconformal deformation G’ of G. Finitely generated
Fuchsian groups have this property because finitely generated quasi-Fuchsian groups are
geometrically finite. The author gives examples of infinitely generated Fuchsian groups
that are d-stable and other examples that are not. 1. Kra
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Non-rectifiable limit sets of dimension one. (English. English summary)
Rev. Mat. Iberoamericana 18 (2002), no. 3, 653-684.
R. Bowen proved that any deformation of a cocompact Fuchsian group gives a quasi-
Fuchsian Kleinian group whose limit set is either a circle or has Hausdorff dimension
> 1. This was extended to all divergence type groups by the author and was shown to
be false for all convergence groups (of the first kind) by K. Astala and M. Zinsmeister.
They showed that all such groups have a deformation such that the limit set is a non-
circular rectifiable curve. Zinsmeister asked if Bowen’s property could fail in a different
way, namely, are there quasi-Fuchsian groups whose limit sets are not locally rectifiable,
but still have dimension 1?7 The author shows that there are many such groups by
constructing quasiconformal deformations of convergence type Fuchsian groups such
that the resulting limit set is a Jordan curve of Hausdorff dimension 1, but having
tangents almost nowhere. The main tools in this construction are a characterization of
tangent points in terms of Peter Jones’ f’s, a result of Stephen Semmes that gives a
Carleson type condition on a Beltrami coefficient @ which implies rectifiability, and a
construction of quasiconformal deformations of a surface which shrink a given geodesic
and whose dilatations satisfy an exponential decay estimate away from the geodesic.
Vasily A. Chernecky
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Quasiconformal mappings of Y-pieces. (English. English summary)

Rev. Mat. Iberoamericana 18 (2002), no. 3, 627-652.

The main purpose of the paper is to present an explicit way of deforming a Riemann
surface collapsing a given closed geodesic . In particular, it is done by a quasiconformal
deformation with the complex dilatation p such that |u| decays exponentially fast away
from . The construction is used in a companion paper in the same volume to construct
quasi-Fuchsian groups whose limit sets are non-rectifiable curves of dimension 1. In
fact, the author gives precise estimates of || for generalized Y-pieces that are Riemann
surfaces bounded by three closed geodesics (or punctures) which are homeomorphic to
a sphere minus three discs (or points). Every finite area Riemann surface can be written
as a finite union of such pieces. Alexander Vasil ev
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