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1 Summary

Van Kampen’s Theorem is in a sense a pasting lemma for the fundamental group. It reconstructs
the fundamental group of a topological space X from the fundamental groups of two open subsets,
U1 and Us, that together make up X and of their intersection.

Van Kampen’s Theorem can be stated in two ways. The first version simply states that the
commutative diagram in Figure 1 is an amalgated product; see Definition 3. By Proposition 4,
this implies that m1(X,p) and the homomorphisms j; and j, are uniquely determined by the
homomorphisms #; and i3 (up to isomorphism commuting with ¢; and iy, as in Figure 4). The
second version describes m1(X,p) in terms of the homomorphisms i; and iy directly. It is more
suitable for applications, but the first version is actually easier to prove. Proposition 4 implies that
the two versions are equivalent.

Theorem 1 (Van Kampen’s Theorem) Suppose X is a topological space, Uy, Us C X are path-
connected open subsets such that Uy NUy is path-connected, and pelyNUs. If

1 (Z/Il,p)

1 (Z/IQap)

Figure 1: Van Kampen’s Theorem Setting

are the group homomorphisms induced by the inclusions, then Figure 1 is an amalgated product.
Thus, the homomorphism

Ji*jo: m (U, p)xmi (U, p) — m1(X, p)

induced by j1 and jo is surjective and ker jixjo is the least normal subgroup N of w1 (U, p)*m1(Usz, p)
containing the set

{ir(a™Viz(a): aemUiNUa, p)} C 71Uy, p)*mi (U, p).

Thus,
T (X, p) & m (U, p)xm1 (Ua, p) /N.

Corollary 2 Suppose X, Uy, Us, p, i1, 12, j1, and jo as are in Theorem 1.
(1) If the homomorphisms i1 and is are trivial, then the homomorphism

Ji*jo: m (U, p)xmi (U, p) — m1(X, p)



nduced by j1 and jo is an isomorphism.
(2) If the group m (Usz, p) is trivial, the homomorphism

J1: m (Ui, p) — m(X,p)

is surjective and ker jy is the least normal subgroup of m (Ur,p) containing Tm ;.

2 Amalgated Product

Definition 3 specifies an object, (é, Ji,j2), by its properties instead of describing it directly. There
are many such definitions in algebra (direct sum, free product), topology (subspace, product,
and quotient topologies, covering map corresponding to a fixed conjugacy class, classifying spaces
for groups), and geometry (moduli spaces of geometric objects, such as curves, surfaces, maps).
Whenever such a definition is given one needs to show that an object with the desired properties
exists and is unique. The latter is usually the easy part; in many cases (direct sum, free product,
covering map) the proof is analogous to that in Proposition 4. On the other hand, showing that
the object exists at all can be quite tricky and the argument is usually of a rather specific nature.

Definition 3 A commutative diagram of group homomorphisms

Figure 2: A Commutative Diagram

is an amalgated product if for every group G and group homomorphisms ¢p, @ Hy, — G for
m=1,2 such that ¢10i1=¢p90i9, i.e. the solid arrows in the diagram

Figure 3: An Amalgated Product

commute, there exists a unique homomorphism ¢: G — G such that ¢m = dojm for m=1,2,
i.e. the entire diagram in Figure 3 commutes.

Proposition 4 Suppose i1: K— Hy and i2: K — Hs are group homomorphisms. Let
G = HyxH;/N,
where N is the smallest normal subgroup of Hi*xHy containing the set

{ir(k™V)ia(k): ke K} C Hy*Ho.



If the homomorphisms jp,: Hy — G are defined by
Jjm(h) = hN for m=1,2,

then the diagram in Figure 2 is an amalgated product. If Figure 2 with (G I1, jg) replaced by an-
other triple (G J1,7%) is an amalgated product, then there exists an isomorphism G—¢& (in fact,
a unique one) such that the entire diagram

i H, '
Hy

Figure 4: An Amalgated Product

commutes.

We first note that if Figure 2 is an amalgated product and h: G —» G is a homomorphism such
that hoj,, =jm for m=1,2, i.e. the diagram

/ H1 \ jl
K | ‘7.1 h :
X /]2//
Hy J2

Figure 5: An Endomorphism of an Amalgated Product

commutes, then h =idz. This is immediate from the uniqueness of é in Figure 3 in the case
(G, ¢1,92)=(G, j1, j2). In other words, since h=idz makes the diagram in Figure 5 commute, id
is the only homomorphism with this property.

Suppose Figure 2 with (G, ji, j2) replaced by another triple (G, 71, 7%) is an amalgated product.
By Figure 3 with (G, ¢1, ¢2)=(G', 51, j5), there exists a (unique) homomorphism

¢:G— G st ji=¢og, ji=doja
By Figure 3 with (G, j1,72) replaced by (G’,j},75) and (G, é1,¢2) = (G, 71, 72), there exists a
(unique) homomorphism

§:G— G st 1= of, j2=d"0j
Then,

dop: G — G and po¢': G' — G
are homomorphisms such that
¢'0¢p0jm=7m for m=1,2 and g?)og?)/oj;n:j;n for m=1,2.

By the previous paragraph, qﬁ' od) ids and gE le idg. In other words, the homomorphism
qﬁ G — @' is an isomorphism of amalgated products, i.e. the diagram



Figure 6: Isomorphism of Amalgated Products

commutes. This implies the second claim of Proposition 4.

Suppose next that G=H; «Hy /N, j1, and jo are as in the first part of Proposition 4. If k€ K, then

(i1 (k)) = i1 (k)N = ia(k) (i1 (k) Via(k)) "

Thus, jjoi1 =jg019, i.e. the diagram in Figure 2 is commutative as required.

N = is(k)N = ja(iz(k)).

Suppose in addition that G is a group and ¢,,: H,, — G for m=1,2 is a group homomorphism
such that ¢10i1 = @g0ig, i.e. the solid arrows in Figure 3 commute. We show that there exists a
unique homomorphism <b G — G such that Om = qﬁo Jjm for m=1,2, i.e. the entire diagram in
Figure 3 is commutative. The conditions ¢,, = gbo Jm for m=1,2, determlne (;5 on Im j; and Im jo.
Since Im j; and Im js generate G, i.e. no proper subgroup of G contains Im j; and Im jo, it follows
qg is unique, if it exists at all. Let

¢1*¢2: HixHy — G

be the homomorphism induced by ¢ and ¢2. Since ¢10i1 =¢py0i2,
pr#ga(i1(k™1)ia(k)) = ¢1 (i1 (k7)) da(i2(k)) = é1 (il(k:))_lgzﬁz (i2(k)) =1€ G VkeK
— i1 (k™ Vig(k) € ker p1x¢o VEkEK.

Since ker ¢1*¢o is a normal subgroup of Hi*Hs, Ker ¢1 x¢o contains N. Thus, ¢1*¢s induces a
homomorphism

¢: G=HxHy/N — G.

Furthermore, . )
¢ (jm(h)) = d(AN) = ¢1x¢2(h) = pm(h) VhEH,y,, m=1,2,

as needed.

3 Proof of Van Kampen’s Theorem

We show that the diagram in Figure 1 is an amalgated product. First, since the diagram

(U, p)

/\
/

(Uz,p)

(U1NU2, p) (X,p)

of inclusions is commutative, so is the diagram in Figure 1.



Suppose that G is a group and ¢, : 7(Up, p) — G for m=1,2 is a group homomorphism such
that ¢10i1 =¢o019, i.e. the solid arrows in the diagram

i m(U,p)
/

7T1(Z/l1ﬂl/{2,p) i
\2‘

1 (U2, p)

commute. We show that there exists a unique homomorphism é: 7m1(X, p) — G such that ¢, = qzojm
for m=1,2, i.e. the entire diagram is commutative. The conditions ¢,, :g?)ojm for m=1,2 deter-
mine ¢ on Im j; and Im jo. Since Im j; and Im jo generate w1 (X, p), as will be re-proved below, it
follows that ¢~> is unique, if it exists. In the rest of this section we construct gg

Let L(U1NUa,p), L(U1,p), L(Us2,p), and L(X,p) denote the spaces of loops (not path-homotopy
classes of loops) based at p that are contained in U NUa, Uy, Uz, and X, respectively. If v is an
element of L(U;NUa,p), L(UL,p), L(Us2,p), and L(X,p), its path-homotopy class in Uy NUa, Ui,
Uz, and X, respectively, will be denoted by [y ris, [@uy, [y, and [, respectively. We will
construct a map

o: L(X,p) — G

such that
(1) [a]=[8] = B(a)=B(B) for all a, Be L(X, p);
(®2) ®(axB)=0(a)®(B) for all a, B L(X,p);
(®3) ®(a) = [aus,,,) for all o € L(Up,p), m=1,2.
Once such a map is constructed, we can define

(;;27T1(X,p) — G by g?)([a]) :@(a) VaeL(X,p).

Properties (®1) and (®2) insure that ¢ is well-defined (independent of the choice of representative
a for [a]) and is a group homomorphism, respectively. By (®3),

O(m([@lu)) = o([0]) = (@) = b ([du,,) V] €M Unm,p), m=1,2,

ie. gbm:g?)ojm as required.

First, we define

: LU p)ULUz,p) — G by @(a):{¢1([a]ul)’ i ac LU, p)

do([au,), if a€L(Ua,p).
Since ¢ 011 =¢@o0i9, this map is well-defined on the overlap:
LU, p)NL(Uz,p) = LIULNU, ).
For if a € LU NUs, p), then
¢1(lafuy) = o1 (i ([enrin)) = P2 (i2([nree)) = ¢2([afws)-

Furthermore,
(@1) [a]us,, =[Blus,, = () =(B) for all o, BE€ L(Up,p), m=1,2;



(P2) ®(axf)=D(a)®(pB) for all a, B € L(Up,,p), m=1,2;
(®3) () =¢m ([a]us,,) for all & € LUy, p), m=1,2.

Given ac€ L(X, p), we define ®(a) €G as follows. First,
a: (I’ {0’1}) — (X’p)

is a continuous map. Take a subdivision of I into subintervals [sx_1, sk], with k=1,... n, such
that the image of each subinterval under « is contained in U,, for m =1 or 2 (depending on the
subinterval). We do not require the subintervals to be of the same size. Define the path

Uspo_1,s0) L —> Um C X by oz[sk_hsk}(s) = a(sk_l—l—(sk—sk_l)s).
This is just a reparametrization of the map a|[5k—175k]' For each k=1,...,n—1, choose a path
Vi (1,0,1) — (X, p, a(sk)) s.t. Imy, C Uy if a(sg) € Up, m=1,2.

In particular, Im~y, C Uy NUs if a(sk) C U1 NU2. Denote by vy and 7, the constant path at p.
The paths

aQ and Y0* A sp,s1] kY1 % V1* sy 50] kY2 kLK ’Ynfl*a[sn,hsn]*’?nv (1)

are then homotopic as loops at p, since 7 *7 is path-homotopic to the constant path at a(sg).

/\ olps) o)

p

Figure 7: Splitting an Element of £(X,p) into Elements of L(U1,p) and L(Uz,p)

By construction, yixays, o %7k € L(U1, p)UL(UL, p) for all k=1,...,n. Thus, by (1), [a]€m (X, p)
is in the subgroup generated by Im j; and Im ja, i.e. this subgroup must be all of 71 (X, p). We put

d(a) = (I)(’Yo*a[so,sl]*%) * ‘P(Vl*a[sl,sg}*%) ... % CID('yn_l *a[sn,l,sn]*’%)- (2)

We claim that ®(«) is well-defined, i.e.
(11) ci>(o¢) is independent of the choice of paths ~v1,...,Vn;
(I2) ®(«) is independent of the choice of subdivision of I.
By (12), (®1), and (®3), ® satisfies ($3):

() = D(yox apa* 1) = V(@) = dm([0y,,)  Va€L(Up,p), m=1,2,

since in this case we can take n=1. By (2), (I2), and (®1), ® satisfies (®2), since we can simply
use subdivisions for o and § to form an admissible subdivision for ax8. Thus, it remains to verify
(11), (12), and (P1).



We first show that replacing 7 with another admissible path ~; , for some k=1,

change the product of the two terms in (2) that involve ;. Let

Br—1= Te—1%sp,_q,54,) and Br = sy, spp1] * Vot
a(sy)
Bk
!
Tk Tk Br—1
p

Figure 8: Verification of (I1)

If o(s) €U, then v, Vg, Vi *7), € L(Unm, p) and

D (v +7k) P (e *7) = P (Vex T xWx V) =1 € G

...,n—1, does not

3)

by (®1) and (®2), since 7, * 7 * vk * 7, is path-homotopic in U,, to the constant path at z.

Furthermore, if S_1 %%, € L(Up, p), then v, x5 € L(Up,, p) and
D (Br-1%7k) @ (Ve *Tk) = P (Br—1 %7k * Ve * k) = ©(Br—1%7k)
by (®1) and (®2). By the same reasoning,
D (e x71) @ (Ve*Br) = @ (v Vex e * Bre) = (Vi Br)-
By (3)-(5),

(4)

(5)

P (Br—1%7,) P (1% k) = P (Br—1%72) @ (V. %Yk ) @ (v *73) L (1% Bk) = P (Br—1%Vk) @ (V% Bk,

i.e. the product of the two terms in (2) that involve ~y; does not change if 7 is replaced by ;.

In order to verify (12), it is sufficient to check that the product (2) does not change if one extra
subdivision is added. Suppose s’ € (s;_1, sx) and 7' is a path from p to a(s’) such that Im~' ClU,,

if a(s") €U,

Figure 9: Verification of (12)

Since the image of [si_1, si| under « is contained in U, for some m=1,2,

’Yk—l*a[sk_l,s’]*’7/¢7/*a[s’,sk]*7k € ﬁ(urmp)
Thus, by (®1) and ($2),

D (-1, %7 ) P(V * A 6% 7) = P (V1% 0]FT Y RO %)

= @(kal*a[sk,l,s/] *a[s/,sk} *’Vk) = cI)(’kal *a[sk,l,sk} *’Vk) .

7



In other words, the term in (2) involving [sk_1, sg] is the product of the terms involving its two
subintervals in the new subdivision.

It remains to verify (®3). Suppose H : I x I — X is a path homotopy between «a, 5 € L(X, p).
Choose subdivisions of the two components of I x I into subintervals [s;_1, s;] and [t;_1, ;] such
that for every k,

H([Sk_1, Sk] X [tl_1, tl]) Cc Uy,

for some m=1,2, i.e. each of the small subrectangles of I xI is mapped by H either to U; or Us.
Let oY) € £(X,p) be the defined by
oD (s) = H(s, 1)

a®=8
o3 /H\
a® X

o

20—
Figure 10: Splitting a Homotopy in X into Homotopies in U; and Us

We will show that ®(a®)=®(al"V) for all 1 >0. This implies that ®(a)=®(B). Since each of
the subrectangles [sx_1, Sg] X [ti—1, ;] is mapped by H entirely into U,,, for some m=1,2, we can
subdivide I into the subintervals [sg_1,si] for the purposes of computing ®(a~) and ®(a®)
via (2). We will show that the kth terms in the expressions in (2) for a1 and o) are equal,
for a compatible choice of paths -y, connecting p to the “junction points” of a/"1) and V). For
each k=1,...,n, let 7 be a path from p to o= (t;) such that Im -~y C U, if "D (1) € Upp,.
Let d;, be the path from al=Y(t;) to aV)(t;) corresponding to the vertical segment sj, X [t;_1, ty]
in Figure 10, i.e.
O (s) = H (sk, tp—1+(tr—tp—1)s).

Then, 7, =7*J;, is a path from p to a(l)(sk) in Upy,.

a(l) (32) a(l) (Sl)

Figure 11: Verifying (®3)

Furthermore, since H maps [sk_1, Sg] X [ti—1, ;] into Uy, the paths 5k_1*a(l)|[8k_178k]* d;, are path-
homotopy in Uy, (the homotopy is induced by H|i, | six[t_y,4])- Thus,
[’Yllc—l *a(l) |[sk_1,sk] *%] Un [Vk—l*!(sk—l *a(l) | [Sk—1,k] *Sk*i'k]um = [’71@—1 *a(l_l) |[sk_1,sk} *’_Yk]um
= (0l * W) = 2 (morx eVl *%)
by (®1), as claimed.



