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1 Summary

Van Kampen’s Theorem is in a sense a pasting lemma for the fundamental group. It reconstructs
the fundamental group of a topological space X from the fundamental groups of two open subsets,
U1 and U2, that together make up X and of their intersection.

Van Kampen’s Theorem can be stated in two ways. The first version simply states that the
commutative diagram in Figure 1 is an amalgated product; see Definition 3. By Proposition 4,
this implies that π1(X, p) and the homomorphisms j1 and j2 are uniquely determined by the
homomorphisms i1 and i2 (up to isomorphism commuting with i1 and i2, as in Figure 4). The
second version describes π1(X, p) in terms of the homomorphisms i1 and i2 directly. It is more
suitable for applications, but the first version is actually easier to prove. Proposition 4 implies that
the two versions are equivalent.

Theorem 1 (Van Kampen’s Theorem) Suppose X is a topological space, U1,U2⊂X are path-
connected open subsets such that U1∩U2 is path-connected, and p∈U1∩U2. If

π1(U1∩U2, p)

π1(U1, p)

π1(U2, p)

π1(X, p)

i1

i2

j1

j2

Figure 1: Van Kampen’s Theorem Setting

are the group homomorphisms induced by the inclusions, then Figure 1 is an amalgated product.
Thus, the homomorphism

j1∗j2 : π1(U1, p)∗π1(U2, p) −→ π1(X, p)

induced by j1 and j2 is surjective and ker j1∗j2 is the least normal subgroup N of π1(U1, p)∗π1(U2, p)
containing the set

{

i1(α
−1)i2(α) : α∈π1(U1∩U2, p)

}

⊂ π1(U1, p)∗π1(U2, p).

Thus,
π1(X, p) ≈ π1(U1, p)∗π1(U2, p)

/

N.

Corollary 2 Suppose X, U1, U2, p, i1, i2, j1, and j2 as are in Theorem 1.
(1) If the homomorphisms i1 and i2 are trivial, then the homomorphism

j1∗j2 : π1(U1, p)∗π1(U2, p) −→ π1(X, p)



induced by j1 and j2 is an isomorphism.
(2) If the group π1(U2, p) is trivial, the homomorphism

j1 : π1(U1, p) −→ π1(X, p)

is surjective and ker j1 is the least normal subgroup of π1(U1, p) containing Im i1.

2 Amalgated Product

Definition 3 specifies an object, (G̃, j1, j2), by its properties instead of describing it directly. There
are many such definitions in algebra (direct sum, free product), topology (subspace, product,
and quotient topologies, covering map corresponding to a fixed conjugacy class, classifying spaces
for groups), and geometry (moduli spaces of geometric objects, such as curves, surfaces, maps).
Whenever such a definition is given one needs to show that an object with the desired properties
exists and is unique. The latter is usually the easy part; in many cases (direct sum, free product,
covering map) the proof is analogous to that in Proposition 4. On the other hand, showing that
the object exists at all can be quite tricky and the argument is usually of a rather specific nature.

Definition 3 A commutative diagram of group homomorphisms

K

H1

H2

G̃

i1

i2

j1

j2

Figure 2: A Commutative Diagram

is an amalgated product if for every group G and group homomorphisms φm : Hm −→ G for
m=1, 2 such that φ1◦i1=φ2◦i2, i.e. the solid arrows in the diagram

K

H1

H2

G̃ G

i1

i2

j1
j2

φ1

φ2

φ̃

Figure 3: An Amalgated Product

commute, there exists a unique homomorphism φ̃ : G̃ −→ G such that φm = φ◦jm for m = 1, 2,
i.e. the entire diagram in Figure 3 commutes.

Proposition 4 Suppose i1 : K−→H1 and i2 : K−→H2 are group homomorphisms. Let

G̃ = H1∗H2/N,

where N is the smallest normal subgroup of H1∗H2 containing the set

{

i1(k
−1)i2(k) : k∈K

}

⊂ H1∗H2.
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If the homomorphisms jm : Hm−→G̃ are defined by

jm(h) = hN for m = 1, 2,

then the diagram in Figure 2 is an amalgated product. If Figure 2 with (G̃, j1, j2) replaced by an-
other triple (G̃′, j′1, j

′
2) is an amalgated product, then there exists an isomorphism G̃−→G̃′ (in fact,

a unique one) such that the entire diagram

K

H1

H2

G̃ G̃′

i1

i2

j1
j2

j′1

j′2

Figure 4: An Amalgated Product

commutes.

We first note that if Figure 2 is an amalgated product and h : G̃−→ G̃ is a homomorphism such
that h◦jm=jm for m=1, 2, i.e. the diagram

K

H1

H2

G̃ G̃

i1

i2

j1
j2

j1

j2

h

Figure 5: An Endomorphism of an Amalgated Product

commutes, then h = id
G̃
. This is immediate from the uniqueness of φ̃ in Figure 3 in the case

(G,φ1, φ2)=(G̃, j1, j2). In other words, since h=id
G̃
makes the diagram in Figure 5 commute, id

G̃

is the only homomorphism with this property.

Suppose Figure 2 with (G̃, j1, j2) replaced by another triple (G̃′, j′1, j
′
2) is an amalgated product.

By Figure 3 with (G,φ1, φ2)=(G̃′, j′1, j
′
2), there exists a (unique) homomorphism

φ̃ : G̃ −→ G̃′ s.t. j′1 = φ̃ ◦ j1, j′2 = φ̃ ◦ j2.

By Figure 3 with (G̃, j1, j2) replaced by (G̃′, j′1, j
′
2) and (G,φ1, φ2) = (G̃, j1, j2), there exists a

(unique) homomorphism

φ̃′ : G̃′ −→ G̃ s.t. j1 = φ̃′ ◦ j′1, j2 = φ̃′ ◦ j′2.

Then,
φ̃′◦φ̃ : G̃ −→ G̃′ and φ̃◦φ̃′ : G̃′ −→ G̃

are homomorphisms such that

φ̃′◦φ̃◦jm=jm for m=1, 2 and φ̃◦φ̃′◦j′m=j′m for m=1, 2.

By the previous paragraph, φ̃′ ◦ φ̃ = id
G̃

and φ̃◦ φ̃′ = id
G̃′ . In other words, the homomorphism

φ̃ : G̃−→G̃′ is an isomorphism of amalgated products, i.e. the diagram
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K

H1

H2

G̃ G̃′

i1

i2

j1
j2

φ1

φ2

φ̃

Figure 6: Isomorphism of Amalgated Products

commutes. This implies the second claim of Proposition 4.

Suppose next that G̃=H1∗H2/N , j1, and j2 are as in the first part of Proposition 4. If k∈K, then

j1
(

i1(k)
)

= i1(k)N = i2(k)
(

i1(k)
−1i2(k)

)−1
N = i2(k)N = j2

(

i2(k)
)

.

Thus, j1◦i1=j2◦i2, i.e. the diagram in Figure 2 is commutative as required.

Suppose in addition that G is a group and φm : Hm−→G for m=1, 2 is a group homomorphism
such that φ1◦i1 = φ2◦i2, i.e. the solid arrows in Figure 3 commute. We show that there exists a
unique homomorphism φ̃ : G̃−→G such that φm = φ̃◦jm for m= 1, 2, i.e. the entire diagram in
Figure 3 is commutative. The conditions φm= φ̃◦jm for m=1, 2, determine φ̃ on Im j1 and Im j2.
Since Im j1 and Im j2 generate G̃, i.e. no proper subgroup of G̃ contains Im j1 and Im j2, it follows
φ̃ is unique, if it exists at all. Let

φ1∗φ2 : H1∗H2 −→ G

be the homomorphism induced by φ1 and φ2. Since φ1◦i1=φ2◦i2,

φ1∗φ2

(

i1(k
−1)i2(k)

)

= φ1

(

i1(k
−1)

)

φ2

(

i2(k)
)

= φ1

(

i1(k)
)−1

φ2

(

i2(k)
)

= 1 ∈ G ∀ k∈K

=⇒ i1(k
−1)i2(k) ∈ kerφ1∗φ2 ∀ k∈K.

Since kerφ1∗φ2 is a normal subgroup of H1∗H2, kerφ1∗φ2 contains N . Thus, φ1∗φ2 induces a
homomorphism

φ̃ : G̃=H1∗H2/N −→ G.

Furthermore,
φ̃
(

jm(h)
)

= φ̃(hN) = φ1∗φ2(h) = φm(h) ∀h∈Hm, m=1, 2,

as needed.

3 Proof of Van Kampen’s Theorem

We show that the diagram in Figure 1 is an amalgated product. First, since the diagram

(U1∩U2, p)

(U1, p)

(U2, p)

(X, p)

of inclusions is commutative, so is the diagram in Figure 1.

4



Suppose that G is a group and φm : π(Um, p)−→G for m= 1, 2 is a group homomorphism such
that φ1◦i1=φ2◦i2, i.e. the solid arrows in the diagram

π1(U1∩U2, p)

π1(U1, p)

π1(U2, p)

π1(X, p) G

i1

i2

j1
j2

φ1

φ2

φ̃

commute. We show that there exists a unique homomorphism φ̃ : π1(X, p)−→G such that φm= φ̃◦jm
for m=1, 2, i.e. the entire diagram is commutative. The conditions φm= φ̃◦jm for m=1, 2 deter-
mine φ̃ on Im j1 and Im j2. Since Im j1 and Im j2 generate π1(X, p), as will be re-proved below, it
follows that φ̃ is unique, if it exists. In the rest of this section we construct φ̃.

Let L(U1∩U2, p), L(U1, p), L(U2, p), and L(X, p) denote the spaces of loops (not path-homotopy
classes of loops) based at p that are contained in U1∩U2, U1, U2, and X, respectively. If α is an
element of L(U1∩U2, p), L(U1, p), L(U2, p), and L(X, p), its path-homotopy class in U1∩U2, U1,
U2, and X, respectively, will be denoted by [α]U1∩U2

, [α]U1
, [α]U2

, and [α], respectively. We will
construct a map

Φ̃ : L(X, p) −→ G

such that
(Φ̃1) [α]=[β] =⇒ Φ̃(α)=Φ̃(β) for all α, β∈L(X, p);
(Φ̃2) Φ̃(α∗β)=Φ̃(α)Φ̃(β) for all α, β∈L(X, p);
(Φ̃3) Φ̃(α)=φm

(

[α]Um

)

for all α ∈L(Um, p), m=1, 2.
Once such a map is constructed, we can define

φ̃ : π1(X, p) −→ G by φ̃
(

[α]
)

= Φ̃(α) ∀α∈L(X, p).

Properties (Φ̃1) and (Φ̃2) insure that φ̃ is well-defined (independent of the choice of representative
α for [α]) and is a group homomorphism, respectively. By (Φ̃3),

φ̃
(

jm([α]Um
)
)

= φ̃
(

[α]
)

= Φ̃(α) = φm

(

[α]Um

)

∀ [α]∈π1(Um, p), m=1, 2,

i.e. φm= φ̃◦jm as required.

First, we define

Φ: L(U1, p)∪L(U2, p) −→ G by Φ(α) =

{

φ1([α]U1
), if α∈L(U1, p);

φ2([α]U2
), if α∈L(U2, p).

Since φ1◦i1=φ2◦i2, this map is well-defined on the overlap:

L(U1, p)∩L(U2, p) = L(U1∩U2, p).

For if α∈L(U1∩U2, p), then

φ1

(

[α]U1

)

= φ1

(

i1([α]U1∩U2
)
)

= φ2

(

i2([α]U1∩U2
)
)

= φ2

(

[α]U2

)

.

Furthermore,
(Φ1) [α]Um

=[β]Um
=⇒ Φ(α)=Φ(β) for all α, β∈L(Um, p), m=1, 2;
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(Φ2) Φ(α∗β)=Φ(α)Φ(β) for all α, β∈L(Um, p), m=1, 2;
(Φ3) Φ(α)=φm

(

[α]Um

)

for all α ∈L(Um, p), m=1, 2.

Given α∈L(X, p), we define Φ̃(α)∈G as follows. First,

α :
(

I, {0, 1}
)

−→ (X, p)

is a continuous map. Take a subdivision of I into subintervals [sk−1, sk], with k = 1, . . . , n, such
that the image of each subinterval under α is contained in Um for m= 1 or 2 (depending on the
subinterval). We do not require the subintervals to be of the same size. Define the path

α[sk−1,sk] : I −→ Um ⊂ X by α[sk−1,sk](s) = α
(

sk−1+(sk−sk−1)s
)

.

This is just a reparametrization of the map α|[sk−1,sk]. For each k=1, . . . , n−1, choose a path

γk : (I, 0, 1) −→
(

X, p, α(sk)
)

s.t. Im γk ⊂ Um if α(sk) ∈ Um, m=1, 2.

In particular, Im γk ⊂ U1∩U2 if α(sk) ⊂ U1∩U2. Denote by γ0 and γn the constant path at p.
The paths

α and γ0∗α[s0,s1]∗γ̄1 ∗ γ1∗α[s1,s2]∗γ̄2 ∗ . . . ∗ γn−1∗α[sn−1,sn]∗γ̄n, (1)

are then homotopic as loops at p, since γ̄k∗γk is path-homotopic to the constant path at α(sk).

s0=0 s3=1s1 s2
p

α(s1)α(s2)

αα γ1γ2

Figure 7: Splitting an Element of L(X, p) into Elements of L(U1, p) and L(U2, p)

By construction, γk∗α[sk−1,sk]∗γ̄k∈L(U1, p)∪L(U1, p) for all k=1, . . . , n. Thus, by (1), [α]∈π1(X, p)
is in the subgroup generated by Im j1 and Im j2, i.e. this subgroup must be all of π1(X, p). We put

Φ̃(α) = Φ
(

γ0∗α[s0,s1]∗γ̄1
)

∗ Φ
(

γ1∗α[s1,s2]∗γ̄2
)

∗ . . . ∗ Φ
(

γn−1∗α[sn−1,sn]∗γ̄n
)

. (2)

We claim that Φ̃(α) is well-defined, i.e.
(I1) Φ̃(α) is independent of the choice of paths γ1, . . . , γn;
(I2) Φ̃(α) is independent of the choice of subdivision of I.

By (I2), (Φ1), and (Φ3), Φ̃ satisfies (Φ̃3):

Φ̃(α) = Φ
(

γ0∗ α[0,1]∗ γ̄1) = Φ(α) = φm

(

[α]Um

)

∀α∈L(Um, p), m=1, 2,

since in this case we can take n=1. By (2), (I2), and (Φ̃1), Φ̃ satisfies (Φ̃2), since we can simply
use subdivisions for α and β to form an admissible subdivision for α∗β. Thus, it remains to verify
(I1), (I2), and (Φ̃1).
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We first show that replacing γk with another admissible path γ′k, for some k=1, . . . , n−1, does not
change the product of the two terms in (2) that involve γk. Let

βk−1 = γk−1∗α[sk−1,sk] and βk = α[sk,sk+1] ∗ γ̄k+1.

p

α(sk)

βk−1

βk

γkγ′

k

Figure 8: Verification of (I1)

If α(sk)∈Um, then γ′k∗γ̄k, γk∗γ̄
′

k∈L(Um, p) and

Φ
(

γ′k∗γ̄k
)

Φ
(

γk∗γ̄
′

k

)

= Φ
(

γ′k∗γ̄k∗γk∗γ̄
′

k

)

= 1 ∈ G (3)

by (Φ1) and (Φ2), since γ′k ∗ γ̄k ∗ γk ∗ γ̄
′

k is path-homotopic in Um to the constant path at x0.
Furthermore, if βk−1∗γ̄

′

k∈L(Um, p), then γ′k∗γ̄k∈L(Um, p) and

Φ
(

βk−1∗γ̄
′

k

)

Φ
(

γ′k∗γ̄k
)

= Φ
(

βk−1∗γ̄
′

k∗γ
′

k∗γ̄k
)

= Φ
(

βk−1∗γ̄k
)

(4)

by (Φ1) and (Φ2). By the same reasoning,

Φ
(

γk∗γ̄
′

k

)

Φ
(

γ′k∗βk
)

= Φ
(

γk∗γ̄
′

k∗γ
′

k∗βk
)

= Φ
(

γk∗βk
)

. (5)

By (3)-(5),

Φ
(

βk−1∗γ̄
′

k

)

Φ
(

γ′k∗βk
)

= Φ
(

βk−1∗γ̄
′

k

)

Φ
(

γ′k∗γ̄k
)

Φ
(

γk∗γ̄
′

k

)

Φ
(

γ′k∗βk
)

= Φ
(

βk−1∗γ̄k
)

Φ
(

γk∗βk
)

,

i.e. the product of the two terms in (2) that involve γk does not change if γk is replaced by γ′k.

In order to verify (I2), it is sufficient to check that the product (2) does not change if one extra
subdivision is added. Suppose s′∈ (sk−1, sk) and γ′ is a path from p to α(s′) such that Im γ′⊂Um

if α(s′)∈Um.

p

α(sk−1)α(sk)

γk−1γk

α(s′)

γ′

Figure 9: Verification of (I2)

Since the image of [sk−1, sk] under α is contained in Um for some m=1, 2,

γk−1∗α[sk−1,s
′]∗γ̄

′, γ′∗α[s′,sk]∗γk ∈ L(Um, p).

Thus, by (Φ1) and (Φ2),

Φ
(

γk−1∗α[sk−1,s
′]∗γ̄

′
)

Φ
(

γ′∗α[s′,sk]∗γk
)

= Φ
(

γk−1∗α[sk−1,s
′]∗γ̄

′∗γ′∗α[s′,sk]∗γk
)

= Φ
(

γk−1∗α[sk−1,s
′]∗α[s′,sk]∗γk

)

= Φ
(

γk−1∗α[sk−1,sk]∗γk
)

.
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In other words, the term in (2) involving [sk−1, sk] is the product of the terms involving its two
subintervals in the new subdivision.

It remains to verify (Φ̃3). Suppose H : I×I −→X is a path homotopy between α, β ∈ L(X, p).
Choose subdivisions of the two components of I×I into subintervals [sk−1, sk] and [tl−1, tl] such
that for every k, l

H
(

[sk−1, sk]×[tl−1, tl]
)

⊂ Um

for some m=1, 2, i.e. each of the small subrectangles of I×I is mapped by H either to U1 or U2.
Let α(l)∈L(X, p) be the defined by

α(l)(s) = H(s, tl).

α(0)=α

α(4)=β

α(1)

α(3)

α(2)

H

X

Figure 10: Splitting a Homotopy in X into Homotopies in U1 and U2

We will show that Φ(α(l)) =Φ(α(l−1)) for all l > 0. This implies that Φ(α) =Φ(β). Since each of
the subrectangles [sk−1, sk]×[tl−1, tl] is mapped by H entirely into Um, for some m=1, 2, we can
subdivide I into the subintervals [sk−1, sk] for the purposes of computing Φ(α(l−1)) and Φ(α(l))
via (2). We will show that the kth terms in the expressions in (2) for α(l−1) and α(l) are equal,
for a compatible choice of paths γk connecting p to the “junction points” of α(l−1) and α(l). For
each k = 1, . . . , n, let γk be a path from p to α(l−1)(tk) such that Im γk ⊂ Um if α(l−1)(tk) ∈ Um.
Let δk be the path from α(l−1)(tk) to α(l)(tk) corresponding to the vertical segment sk×[tk−1, tk]
in Figure 10, i.e.

δk(s) = H
(

sk, tk−1+(tk−tk−1)s
)

.

Then, γ′k≡γk∗δk is a path from p to α(l)(sk) in Um.

s0=0 s3=1s1 s2

H
tl

δ2 δ1

p

α(l)(s1)α(l)(s2)

α(l−1)

α(l)

γ1γ2

Figure 11: Verifying (Φ̃3)

Furthermore, since H maps [sk−1, sk]×[tl−1, tl] into Um, the paths δk−1∗α
(l)|[sk−1,sk]∗ δ̄k are path-

homotopy in Um (the homotopy is induced by H|[sk−1,sk]×[tl−1,tl]). Thus,
[

γ′k−1∗α
(l)|[sk−1,sk]∗γ̄

′

k

]

Um

=
[

γk−1∗!δk−1∗α
(l)|[sk−1,sk]∗δ̄k∗γ̄k

]

Um

=
[

γk−1∗α
(l−1)|[sk−1,sk]∗γ̄k

]

Um

=⇒ Φ
(

γ′k−1∗α
(l)|[sk−1,sk]∗γ̄

′

k

)

= Φ
(

γk−1∗α
(l−1)|[sk−1,sk]∗γ̄k

)

by (Φ1), as claimed.
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